Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.03 MB, 37 trang )
Bạn đang đọc: vật liệu từ và ứng dụng – Tài liệu text
Vật liệu từ và ứng dụng
————————————————————————————————————–
MỞ ĐẦU
Lịch sử của từ học được bắt đầu từ khi người Trung Hoa cổ đại phát hiện ra
các đá từ thạch có khả năng định hướng Nam – Bắc, và có khả năng hút các vật bằng
sắt. Nghiên cứu về từ học được mở ra vào thế kỷ 18 khi Girlbert viết cuốn sách về
Điện và Từ, sau đó là thí nghiệm về sự tương tác giữa từ trường và dòng điện của
Oersted, các công trình của Ampere và Faraday… Các nghiên cứu về từ học và các
vật liệu từ phát triển như vũ bão ở thế kỷ 20, và vật liệu từ đã thực sự được đưa vào
ứng dụng rộng rãi trong cuộc sống và sản xuất.
Về mặt ứng dụng, trong công nghiệp và đời sống hằng ngày, người ta chia
vật liệu từ thành ba loại chính. Đó là vật liệu từ cứng, vật liệu từ mềm và vật liệu ghi
từ. Trong khuôn khổ bài tiểu luận này, em xin trình bày một số vấn đề cơ bản của ba
loại vật liệu từ đã được phân loại như trên và một số ứng dụng của chúng. Nội dung
của bài tiểu luận gồm các phần như sau:
Chương 1: Tổng quan về ba loại vật liệu từ
Chương 2: Vật liệu từ mềm ferit spinel và vật liệu từ cứng ferit hecxagonal
————————————————————————————————————-1
Vật liệu từ và ứng dụng
————————————————————————————————————–
CHƯƠNG 1: TỔNG QUAN VỀ BA LOẠI VẬT LIỆU TỪ
1.1. Các ứng dụng của vật liệu từ cứng và từ mềm
1.1.1. Ứng dụng của vật liệu từ cứng
Đã có rất nhiều vật liệu từ cứng được phát hiện, nghiên cứu và ứng dụng trong
nhiều lĩnh vực với nhiều mục đích khác nhau. Các loại vật liệu từ cứng chính có thể
kể đến là:
• Các loại thép nam châm
• Các nam châm trên cơ sở hợp kim sắt từ mà điển hình là các nam châm hợp
kim AlNiCo
• Các nam châm ferit
• Các nam châm đất hiếm trên cơ sở coban
• Các nam châm đất hiếm NdFeB.
Các vật liệu từ cứng được sử dụng làm nam châm vĩnh cửu, ứng dụng trong rất
nhiều lĩnh vực khác nhau của đời sống và kỹ thuật. Nam châm vĩnh cửu được sử
dụng ở dạng đơn giản trong các thiết bị như các động cơ, máy phát, khởi động điện
từ, loa điện động … và trong các linh kiện công nghệ cao như các các cảm biến, đĩa
ghi từ mật độ cao, vi khởi động điện từ… Trong tình trạng khủng hoảng về năng
lượng và ô nhiễm môi trường như hiện nay, vấn đề sử dụng các nguồn năng lượng
tái tạo lại đang được toàn thế giới đặc biệt quan tâm và phát triển mạnh mẽ. Nam
châm vĩnh cửu đóng vai trò quan trọng không thể thiếu được trong hầu hết các thiết
bị chuyển đổi các dạng năng lượng đó thành năng lượng điện.
Có thể phân loại các ứng dụng của nam châm vĩnh cửu trong các thiết bị trên
cơ sở tác dụng của chúng như sau:
• Nam châm vĩnh cửu dùng để biến đối điện năng thành cơ năng (các
loại động cơ) và biến đổi cơ năng thành điện năng (các loại máy phát)
• Nam châm vĩnh cửu dùng để tạo lực tác dụng lên các vật liệu dẫn từ
(vật liệu từ mềm, biến thế, nâng bằng từ, đồ chơi, vật liệu từ gia dụng,v.v…)
————————————————————————————————————-2
Vật liệu từ và ứng dụng
————————————————————————————————————–
• Nam châm vĩnh cửu định hướng theo hướng từ trường ngoài (kim địa
bàn …)
• Nam châm vĩnh cửu dùng để tạo lực tác dụng lên các hạt điện tích
chuyển động
Vật liệu từ cứng có thể dùng để chế tạo các nam châm vĩnh cửu hoặc được sử dụng
làm vật liệu ghi từ trong các ổ đĩa cứng, các băng từ.
Một số loại nam châm vĩnh cửu đã chế tạo được từ vật liệu từ cứng là:
+) Nam châm AlNiCo: là loại nam châm được chế tạo từ các hợp kim của
nhôm, niken, côban và một số các phụ gia khác như đồng, titan… Đây là loại nam
châm cho từ dư cao (tới 1.2 – 1.5 T) nhưng có lực kháng từ chỉ xung quanh 1kOe,
đồng thời giá thành cũng khá cao nên hiện nay tỉ lệ sử dụng ngày càng giảm dần.
+) Ferrite từ cứng: là loại nam châm vĩnh cửu được chế tạo từ các ferit từ
cứng (như ferit Ba, Sr…) là các vật liệu dạng gốm và có thể bổ sung các nguyên tố
đất hiếm để cải thiện tính từ cứng. Loại nam châm này có hàm lượng ôxy cao nên có
từ độ khá thấp, có lực kháng từ từ 3 đến 6 kOe, có khả năng cho tích năng lượng từ
cực đại lớn nhất không quá 6MGOe. Hiện nay loại nam châm này chiếm tới hơn
50% thị phần sử dụng do những ưu điểm về giá thành cực rẻ, chế tạo và gia công rất
dễ, độ bền cao.
+) Nam châm đất hiếm: là loại nam châm vĩnh cửu được tạo ra từ các hợp
kim hoặc hợp chất của các kim loại đất hiếm và kim loại chuyển tiếp.
Nam châm nhiệt độ cao SmCo: là hệ các nam châm vĩnh cửu được chế tạo từ
hợp chất ban đầu là SmCo5 được phát minh năm 1966 bởi tiến sĩ Karl J. Strnat của
U.S. Air Force Materials Laboratory có tích năng lượng từ cực đại 18 MGOe, sau đó
Karl J. Strnat lại phát minh ra hợp chất Sm2Co17 có tích năng lượng từ tới 30 MGOe
vào năm 1972. Hệ nam châm SmCo có nhiệt độ Curie rất cao (có thể đạt tới 1100 oC)
và có lực kháng từ cực lớn (tới vài chục kOe) nhờ cấu trúc dạng lá đặc biệt. Vì thế,
loại nam châm này được sử dụng trong các ứng dụng nhiệt độ cao (ví dụ trong động
cơ phản lực…).
Nam châm NdFeB (neodymium): là hệ các nam châm dựa trên hợp chất
R2Fe14B (R là ký hiệu chỉ các nguyên tố đất hiếm ví dụ như Nd, Pr…) có cấu trúc
tinh thể kiểu tứ giác với lực kháng từ lớn (hơn 10 kOe) và từ độ bão hòa rất cao (tới
1,56 T) nên là loại nam châm vĩnh cửu mạnh nhất hiện nay với khả năng cho tích
————————————————————————————————————-3
Vật liệu từ và ứng dụng
————————————————————————————————————–
năng lượng từ tới 64 MGOe (tính toán theo lý thuyết). Năm 1983 nam châm
Nd2Fe14B lần đầu tiên được phát minh bởi R. Sagawa (Nhật Bản) có tích năng lượng
từ 57 MGOe. Tuy nhiên, loại nam châm này lại không thể sử dụng ở nhiệt độ cao do
có nhiệt độ Curie chỉ 312oC.
Nam châm đất hiếm NdFeB được sử dụng trong ổ cứng máy tính (hình 1.1).
Hình 1.1. Hình ảnh nam châm đất hiếm NdFeB
Điểm yếu chung của các nam châm đất hiếm là có giá thành cao (do chứa
được sử dụng trong ổ cứng máy tính.
nhiều các nguyên tố đất hiếm đắt tiền), có độ bền kém (do các nguyên tố đất hiếm có
tính ôxy hóa rất cao). Vì vậy các nam châm đất hiếm vẫn không phải là loại được sử
dụng nhiều nhất (đứng sau nam châm ferit).
+) Nam châm tổ hợp nano: là loại nam châm mới ra đời từ đầu thập kỷ 90
của thế kỷ 20, có cấu trúc tổ hợp của 2 pha từ cứng và từ mềm ở kích thước
nanomet. Các pha từ cứng (chiếm tỉ phần thấp) cung cấp lực kháng từ lớn, pha từ
mềm cung cấp từ độ lớn. Tính chất tổ hợp này có được là nhờ liên kết trao đổi đàn
hồi giữa các hạt pha từ cứng và từ mềm ở kích thước nanomet. Loại nam châm này
được tính toán có khả năng cho tích năng lượng từ khổng lồ hơn 3 lần so với nam
châm mạnh nhất hiện nay là NdFeB nhưng thực nghiệm mới chỉ đạt được rất nhỏ so
với lý thuyết và các sản phẩm thực nghiệm mới trong giai đoạn sản xuất thử nghiệm.
Ngoài ra còn nhiều loại nam châm với các tính chất khác nhau nữa. Tùy theo
nhu cầu sử dụng mà người ta chế tạo các loại nam châm khác nhau. Những lĩnh vực
ứng dụng chủ yếu của các nam châm là loa điện, môtơ điện, các thiết bị đo điện,…
Trong vài năm gần đây phạm vi ứng dụng nam châm vĩnh cửu mở rộng rất nhiều,
đặc biệt trong các ngành điện, điện tử, giao thông vận tải, y sinh học. Các máy phát
điện chạy bằng sức gió, sức nước dùng động cơ nam châm vĩnh cửu góp phần bổ
sung nguồn năng lượng thiếu hụt và ngày càng đắt đỏ trên trái đất, các môtơ một
chiều cho xe đạp, xe máy, ôtô chạy điện giảm ô nhiễm môi trường. Các viên từ chữa
————————————————————————————————————-4
Vật liệu từ và ứng dụng
————————————————————————————————————–
đau đầu, đau khớp, huyết áp cao… được sử dụng ngày một phổ biến. Đặc biệt các
hạt bột từ cỡ nano mét trong chất lỏng từ để tải thuốc tới chữa trị các khối u đang
được quan tâm nghiên cứu. Chính bởi những ứng dụng hết sức phong phú và đa
dạng này mà sản lượng nam châm không ngừng được phát triển.
1.1.2. Ứng dụng của vật liệu từ mềm
Các vật liệu từ mềm rất đa dạng, khối lượng sử dụng lớn, được ứng dụng
trong nhiều lĩnh vực khác nhau. Các vật liệu từ mềm được sử dụng làm các vật dẫn
từ trong các đường dây tải điện, các máy biến thế, các máy điện, các rơle, các máy
đo, lõi các cuộn cảm, các màn chắn từ,… Vật liệu từ mềm đóng vai trò như một
khuếch đại cảm ứng từ. Ngoài ra, còn có một số yêu cầu riêng cho các ứng dụng cụ
thể. Ví dụ, khi vật liệu từ mềm được dùng làm màn chắn từ để chắn không cho
đường sức từ xuyên qua nó thì yêu cầu chủ yếu của vật liệu là, độ từ thẩm ban đầu
μ0 và độ từ thẩm cực đại μ max phải cao. Nếu dùng vật liệu từ mềm làm biến thế xung
thì đường từ hóa ban đầu của vật liệu càng dốc đứng thì tốc độ tăng xung càng lớn.
Có nhiều loại vật liệu từ mềm đã được nghiên cứu, ché tạo và ứng dụng với
các mục đích khác nhau. Các vật liệu từ mềm chính có thể kể đến là:
–
Kim loại, hợp kim từ mềm (sắt tinh khiết kỹ thuật, thép kỹ thuật điện,
permalloys… )
–
Điện môi từ
–
Ferit từ mềm
–
Vật liệu từ mềm vô định hình và có kích thước nanomet.
Vật liệu từ mềm được ứng dụng làm lõi dẫn từ trong máy biến thế, lõi cuộn cảm,
lõi tạo từ trường trong nam châm điện, cảm biến đo từ trường… Các vật liệu ferit có
điện trở suất lớn (tới 106 Ωcm) được sử dụng rất hiệu quả trong lĩnh vực cao tần.
Nhiều loại vật liệu có tính từ giảo được sử dụng làm thiết bị siêu âm.
Máy biến thế hay máy biến áp là thiết bị điện có thể thay đổi hiệu điện thế xoay
chiều, tăng thế hoặc hạ thế, đầu ra cho một hiệu điện thế tương ứng với nhu cầu sử
dụng và đóng vai trò rất quan trọng trong truyền tải điện năng. Cấu tạo cơ bản của
————————————————————————————————————-5
Vật liệu từ và ứng dụng
————————————————————————————————————–
máy biến thế thường là hai hay nhiều cuộn dây đồng cách điện được quấn trên cùng
một lõi sắt hay sắt từ ferit (hình 1.2).
Hình 1.2. Hình ảnh bên trong của một máy biến
thế.
Cuộn cảm là một linh kiện điện tử thụ động, thường dùng trong mạch điện có
dòng điện biến đổi theo thời gian (như các mạch điện xoay chiều). Cuộn cảm có tác
dụng lưu trữ năng lượng ở dạng từ năng (năng lượng của từ trường tạo ra bởi cuộn
cảm khi dòng điện đi qua) và làm dòng điện bị trễ pha so với điện áp một góc bằng
90°. Hình 1.3 là một ví dụ về cuộn cảm có lõi làm bằng ferit.
Hình 1.3. Ảnh chụp các lõi ferrite trong các cuộn cảm sử dụng ở tần số cao
(dẫn sóng, tách sóng).
Nam châm điện là một dụng cụ tạo từ trường hay một nguồn sản sinh từ
trường hoạt động nhờ từ trường sinh ra bởi cuộn dây có dòng điện lớn chạy qua.
Cảm ứng từ của nam châm điện được dẫn và tạo thành lớn nhờ việc sử dụng một lõi
dẫn từ làm bằng vật liệu từ mềm có độ từ thẩm lớn và cảm ứng từ bão hòa cao. Khác
với nam châm vĩnh cửu có cảm ứng từ cố định, nam châm điện có cảm ứng từ có thể
thay đổi được nhờ việc điều khiển dòng điện chạy qua cuộn dây. Nam châm điện lần
————————————————————————————————————-6
Vật liệu từ và ứng dụng
————————————————————————————————————–
đầu tiên được phát minh bởi nhà điện học người Anh William Sturgeon (1783-1850)
vào năm 1825 (hình 1.4).
Hình 1.4. Hình ảnh nam châm điện đầu tiên làm từ một lõi sắt non.
Nam châm điện của Sturgeon là một lõi sắt non hình móng ngựa có một số
vòng dây điện cuốn quanh. Khi cho dòng điện sinh ra bởi một pin nhỏ chạy qua, lõi
sắt bị từ hóa và cảm ứng từ sinh ra đủ mạnh để hút lên được một hộp sắt nặng 7
ounce. Khi ngắt dòng điện, từ trường của lõi cũng biến mất.
Cảm biến đo từ trường hiện nay thường dùng các màng mỏng từ mềm. Hình
1.5 là cấu tạo của một cảm biến sử dụng hiệu ứng từ trở (Magnetoresistance – MR là sự thay đổi điện trở suất của vật liệu dưới tác dụng của từ trường ngoài) và một
cảm biến sử dụng hiệu ứng từ trở khổng lồ (Giant Magnetoresistance – GMR – là sự
thay đổi lớn của điện trở ở các vật liệu từ dưới tác dụng của từ trường ngoài). Hai
đầu cảm biến là hai lớp chắn từ không cho từ trường bên ngoài làm ảnh hưởng đến
lớp ở giữa. Ở giữa là màng đa lớp gồm 4 lớp màng mỏng: lớp sensing (làm từ NiFe),
lớp spacer (vật liệu đồng), lớp pinned (làm từ Co) và lớp exchange. Ba lớp đầu rất
mỏng, cho phép các electron dẫn có thể di chuyển tự do từ lớp sensing sang lớp
pinned và ngược lại thông qua lớp spacer. Hướng từ hóa của lớp pinned là cố định,
trong khi hướng từ hóa của lớp sensing có thể thay đổi theo từ trường ngoài. Khi lớp
pinned và lớp sensing có cùng hướng mômen từ, các điện tử có spin song song với
mômen từ này sẽ di chuyển tự do trong cả hai lớp màng mỏng, và điện trở thu được
là nhỏ. Khi ta đổi hướng từ hóa lớp sensing, lớp pinned và lớp sensing có mô men từ
ngược hướng nhau, thì khi đó điện tử có spin hướng lên bị cản trở bởi một lớp màng
————————————————————————————————————-7
Vật liệu từ và ứng dụng
————————————————————————————————————–
từ, và điện tử có spin hướng xuống sẽ bị cản trở bởi lớp màng từ còn lại, kết quả là
điện trở thu được rất lớn.
Hình 1.5. Cấu tạo của cảm biến MR và cảm biến GMR
sử dụng trong ổ đĩa cứng.
1.2. Các yêu cầu về tính chất từ của vật liệu từ cứng và vật liệu từ mềm
Tính mềm/cứng không nằm ở tính chất cơ học, mà nằm ở khả năng khó hay
dễ bị từ hoá và khử từ. Như vậy, thông số ban đầu nói lên tính cứng/mềm là giá trị
lực kháng từ HC. Các đường cong từ trễ ở hình 1.6 là một cách phân chia tương đối
vật liệu từ mềm/cứng. Ta thấy rằng các vật liệu từ mềm có giá trị H C nhỏ (thường
dưới 102 Oe. Trong khi các vật liệu từ cứng có HC lớn trên 102 Oe.
————————————————————————————————————-8
Vật liệu từ và ứng dụng
————————————————————————————————————–
Hình 1.6. Các đường cong từ trễ của vật liệu từ cứng và vật liệu từ mềm.
Ba yêu cầu chung cho các vật liệu từ mềm là:
• Từ hóa dễ, nghĩa là khi từ trường ngoài H đặt vào để từ hóa vật liệu với
giá trị nhỏ mà cảm ứng từ B đã đạt được khá lớn (vật liệu có giá trị μ 0 lớn, μmax lớn
và Hc nhỏ).
• Cảm ứng từ cực đại Bs có giá trị cao. Điều này có nghĩa là, các vật liệu từ
mềm với một thể tích không đổi, số đường sức từ qua nó càng nhiều càng giảm được
kích thước của vật liệu sử dụng.
Có thể hai điều kiện trên không thỏa mãn đồng thời trong 1 loại vật liệu.
• Khi sử dụng các vật liệu từ mềm trong từ trường xoay chiều sẽ xuất hiện
tổn hao, yêu cầu tổn hao càng nhỏ càng ít.
Vật liệu từ mềm có độ từ thẩm μ phải càng lớn càng tốt, vì ta biết quan hệ
B=μ0.μ.H, nghĩa là nếu ta có giá trị μ lớn, ta có thể tạo ra một cảm ứng từ rất lớn chỉ
bằng một từ trường ngoài không cần lớn. Độ từ thẩm của vật liệu từ mềm không
những lớn, mà còn phụ thuộc vào từ trường, vì thế, người ta còn dùng hai thông số
về độ từ thẩm của vật liệu từ mềm để nói lên tính “mềm” của nó, đó là:
– Độ từ thẩm ban đầu µi (initial permeability) là độ từ thẩm tại giá trị H=0, được
B
H →0 H
xác định bằng tỉ số: µi = lim
(1.1)
————————————————————————————————————-9
Vật liệu từ và ứng dụng
————————————————————————————————————–
– Độ từ thẩm cực đại µmax (maximum permeability) là giá trị cực đại của độ từ
thẩm, không phụ thuộc vào từ trường ngoài, chỉ phụ thuộc vào bản chất vật liệu.
Hình 1.7. Đường cong từ trễ của vật liệu từ mềm
và các thông số đặc trưng của nó trên đường trễ.
Từ độ bão hoà BS của vật liệu từ mềm thường rất lớn, trong khi vật liệu từ
cứng thường có từ độ bão hòa nhỏ.
Cảm ứng từ dư B r là cảm ứng từ còn dư sau khi ngắt từ trường. Vật liệu từ
cứng có cảm ứng từ dư khá cao và hầu như còn nguyên vẹn sau khi ngắt từ trường
từ hóa, muốn triệt tiêu nó thì ta phải từ hóa vật theo chiều ngược lại với một từ
trường khử lớn (tới hàng trăm kA/m). Trái lại đối với vật liệu từ mềm, sau khi ngắt
từ trường từ hóa thì cảm ứng từ dư của vật biến mất hoặc chỉ còn rất nhỏ, rất dễ khử
mất nó bằng một từ trường khử rất bé (cỡ vài trăm A/m).
Đối với vật liệu từ mềm, một thông số khác mà người ta quan tâm đến là tổn
hao trễ, hay năng lượng bị mất mát trong một chu trình từ trễ (hysteresis loss), được
tính bằng diện tích giới hạn bởi đường cong từ trễ. Vật liệu từ mềm tốt, ngoài các
yếu tố HC nhỏ, μ cao, IS lớn, còn cần có tổn hao trễ càng nhỏ càng tốt. Nhưng khi vật
liệu được sử dụng trong từ trường xoay chiều (ví dụ như lõi biến thế), lại phát sinh
ra một tổn hao khác đáng chú ý, đó là tổn hao dòng xoáy (Eddy current loss) do khi
đặt vào từ trường xoay chiều, xuất hiện dòng Foucault chạy kín trong lõi làm toả
nhiệt trên lõi. Công suất toả nhiệt được cho bởi công thức:
————————————————————————————————————-10
Vật liệu từ và ứng dụng
————————————————————————————————————–
PEddy =
4.BS2 .d 2 .k 2f. f 2
3.γ .ρ
(1.2)
với BS là cảm ứng từ bão hoà của lõi (vật liệu từ mềm chỉ cần bão hoà từ trong từ
trường rất nhỏ so với IS nên cũng có thể nói rằng cảm ứng từ B cũng có xu hướng
đến giá trị bão hoà), d là độ dày của lõi, k f là một hệ số đặc trưng, f là tần số của từ
trường xoay chiều, γ là khối lượng riêng của vật liệu, ρ là điện trở suất. Điều này lý
giải tại sao những vật liệu từ mềm nền kim loại (ví dụ như lõi FeSi) không thể dùng
ở tần số cao bởi chúng có điện trở suất nhỏ sẽ gây tổn hao Foucault lớn, mà phải
dùng các ferrite từ mềm có điện trở suất rất lớn (vật liệu gốm) nhằm giảm dòng
Foucault. Công thức (1.2) cũng lý giải cho ta tại sao người ta phải chế tạo các lõi
biến thế có dạng các lá mỏng (d nhỏ) vì để giảm dòng Foucault. Chú ý khi sử dụng
vật liệu từ mềm ở tần số càng cao thì phẩm chất của vật liệu càng bị suy giảm, do đó
sự thay đổi của phẩm chất theo tần số là một thông số rất đáng quan tâm. Ngoài ra,
việc khử từ giảo (từ giảo là sự thay đổi hình dạng vật liệu từ dưới tác dụng của từ
trường ngoài) giúp cho việc tạo ra tính từ mềm tốt. Có những vật liệu có từ giảo
bằng 0 như vật liệu vô định hình nền Co.
Ngoài các yêu cầu chính đã nêu trên còn có 1 số yêu cầu khác khi sử dụng vật
Xem thêm: Vật tư thủy canh | Thủy Canh Miền Nam
liệu từ mềm trong những ứng dụng cụ thể. Các thông số từ cần phải ổn định trong
khoảng nhiệt độ và thời gian sử dụng. Nói chung, đối với vật liệu từ mềm, giá trị từ
thẩm càng cao càng tốt.
Các vật liệu từ cứng phải có lực kháng từ H c lớn, cảm ứng từ dư lớn và tích
năng lượng cực đại lớn. Ngoài ra để ứng dụng được trong thực tế vật liệu làm nam
châm vĩnh cửu phải là vật liệu sắt từ có dị hướng đơn trục c và có nhiệt độ Curie cao
hơn nhiều so với nhiệt độ phòng. Vật liệu phải có độ bền cơ học, hóa học (bền trong
môi trường sử dụng) và giá thành phải rẻ hoặc có thể chấp nhận được. Một số vật
liệu từ cứng được ứng dụng trong các nam châm hoạt động ở nhiệt độ cao nên nó
đòi hỏi nhiệt độ Curie rất cao (nhiệt độ Curie là nhiệt độ mà tại đó vật liệu bị mất từ
tính trở thành chất thuận từ). Loại vật liệu từ cứng có nhiệt độ Curie cao nhất hiện
nay là nhóm các vật liệu trên nền SmCo (từ 500oC đến trên 1000oC).
Các đặc trưng cơ bản của nam châm từ cứng là:
————————————————————————————————————-11
Vật liệu từ và ứng dụng
————————————————————————————————————–
• Lực kháng từ Hc
Đây là đại lượng quan trọng của vật liệu từ cứng, lực kháng từ H c có giá trị
càng lớn càng tốt. Nguồn gốc của lực kháng từ lớn trong các vật liệu từ cứng chủ
yếu liên quan đến đến dị hướng từ tinh thể lớn trong vật liệu. Các vật liệu từ cứng
thường có cấu trúc tinh thể có tính đối xứng kém hơn so với các vật liệu từ mềm và
chúng có dị hướng từ tinh thể rất lớn, nghĩa là có tính bất đối xứng rất cao về mặt
tinh thể học (như các kiểu cấu trúc tinh thể lục giác, tứ giác…) và thường là các vật
liệu có dị hướng đơn trục (tức là có một trục dễ từ hoá). Vì vậy, muốn bão hoà một
vật liệu từ mềm, ta chỉ cần một từ trường cỡ vài trăm Oe hay cùng lắm đến vài ngàn
Oe nhưng để bão hoà một vật liệu từ cứng, ta cần từ trường cỡ vài chục đến vài trăm
ngàn Oe. Để tạo ra vật liệu từ cứng tốt, người ta thường tạo ra nó gồm các hạt có cấu
trúc đơn đômen, tức là mỗi hạt chỉ là một đômen từ tính, và cơ chế đảo từ sẽ là cơ
chế quay kết hợp các mômen từ (cơ chế quay – rotation mechanism) hoặc cơ chế
hãm sự phát triển của mầm đảo từ (nucleation field mechanism).
• Cảm ứng từ dư Br, đường cong khử từ và tích năng lượng cực đại (BH)max
Cảm ứng từ dư Br là thông số dặc trưng của vật liệu từ cứng. Cùng với H c
người ta tìm cách tăng giá trị Br của vật liệu để nam châm có (BH) max đạt giá trị
cao.Đường cong từ trễ là cách thông dụng nhất để thể hiện tính chất vĩ mô của vật
liệu. Đường cong từ trễ thuộc góc phần tư cung thứ hai gọi là đường cong khử từ.
Một thông số quan trọng khác được quan tâm của vật liệu từ cứng là tích năng lượng
từ cực đại (Maximum Energy Product), đó là năng lượng cực đại có khả năng tích
trữ trong một đơn vị thể tích vật từ. Khi vật liệu từ cứng đặt trong từ trong từ trường
ngoài đã tự nạp năng lượng và tàng trữ phần lớn năng lượng đó khi lấy từ trường
ngoài đi. Năng lượng này được giải phóng nếu vật liệu chịu tác dụng của trường
kháng từ. Theo lý thuyết thì giá trị (BH)max được xác định bằng biểu thức sau:
(BH)max = Br2/4μ0 [kJ/m3], hoặc (BH)max = Br2/4 [MGOe]
Tích năng lượng từ cực đại được xác định trên đường cong từ trễ ở góc phần tư thứ
2, là điểm có giá trị tích B.H lớn nhất. Giá trị năng lượng cực đại phụ thuộc và H c, Br
và hệ số lồi của đường cong khử từ.. Tích năng lượng từ cực đại nói lên độ mạnh
————————————————————————————————————-12
Bảng1.1. Bảng so sánh các yêu cầu về tính chất từ của vật liệu từ cứng và vật liệu từ
mềm.
Vật liệu từ và ứng dụng
————————————————————————————————————–
yếu của một nam châm. Vì thế đường cong từ trễ I(H) càng có dạng hình chữ nhật
càng tốt.
Hình 1.8. Cách xác định tích năng lượng từ cực đại trên đường cong từ trễ
của vật liệu từ cứng.
Bảng1.1. Bảng so sánh các yêu cầu về tính chất từ
của vật liệu từ cứng và vật liệu từ mềm.
Vật liệu từ cứng
Vật liệu từ mềm
(Hard magnetic materials)
(Soft magnetic materials)
Là nhóm các vật liệu khó khử từ và khó Là các vật liệu dễ từ hoá và cũng dễ
từ hoá.
khử từ.
Lực kháng từ HC lớn.
Lực kháng từ HC nhỏ.
Độ từ thẩm µ nhỏ.
Độ từ thẩm µ cao.
Độ từ hóa bão hòa IS nhỏ.
Độ từ hóa bão hòa IS lớn.
Cảm ứng từ dư Br khá cao, cường độ Cảm ứng từ dư Br khá nhỏ, cường độ
trường khử từ khá lớn.
trường khử từ rất nhỏ.
Tích năng lượng từ cực đại (B.H)max Độ tổn hao từ trễ thấp.
cao.
1.3. Nguyên tắc ghi từ và các yêu cầu về vật liệu ghi từ
1.3.1. Nguyên tắc ghi từ
————————————————————————————————————-13
Vật liệu từ và ứng dụng
————————————————————————————————————–
Cơ chế ghi dựa trên từ trường sinh bởi dòng điện đi qua ống xoắn. Các xung
động được gửi đến đầu từ, sau đó những khuôn dạng từ khác nhau ứng với các dòng
điện âm/dương sẽ được ghi lên bề mặt đĩa ở bên dưới. Đầu từ là một thiết bị tương
đối nhỏ có khả năng đọc/ghi từ/lên một phần của tấm đĩa quay bên dưới. Đó là một
cuộn dây quấn xung quanh một lõi (vật liệu từ) có xẻ một khe (hình 1.9). Dữ liệu
được đưa vào (hay “ghi”) bằng tín hiệu điện qua cuộn dây làm lõi từ sinh một từ
trường đi qua khe.Từ trường này sẽ từ hóa một khu vực rất nhỏ trên đĩa hoặc băng.
Khi ngắt trường, sự từ hóa vẫn còn lưu lại và tín hiệu đã được lưu trữ. Cũng chính
đầu từ đó được dùng để tái hiện thông tin đã lưu trữ. Khi băng hoặc đĩa đi qua khe
của đầu từ, mỗi một biến đổi của từ trường băng (đĩa) sẽ sinh ra một điện áp cảm
ứng trong cuộn dây đầu từ. Điện áp này được khuếch đại rồi chuyển về dạng nguyên
gốc. Dữ liệu được đọc và ghi thông qua các dãy bit (đơn vị nhỏ nhất của dữ liệu số).
Một bit chỉ có hai trạng thái 0, 1 hay bật/tắt.
Hình 1.9. Nguyên tắc ghi từ.
Có hai phương pháp ghi từ là ghi theo chiều dọc và ghi vuông góc:
– Ghi theo chiều dọc: là ghi từ trường theo chiều dọc, trong đó sự từ hoá của mỗi
bit dữ liệu sắp theo hàng ngang với sự quay của đĩa. Trong kiểu ghi theo chiều dọc,
những trường giữa những bit kề sát nhau mà có trường ngược nhau được tách riêng
bằng một vùng chuyển tiếp (transition region) như trên hình 1.10. Mật độ phân bố là
tổng số dữ liệu được lưu trữ trên ổ cứng trên một inch vuông, được tính bằng bằng
số track/inch nhân với số bit/inch. Giới hạn của mật độ phân bố đối với công nghệ
————————————————————————————————————-14
Vật liệu từ và ứng dụng
————————————————————————————————————–
ghi theo chiều dọc phụ thuộc vào hiệu ứng Superparamagtic (Điểm mà tại đó những
vùng từ trường rời rạc của bề mặt đĩa quá nhỏ dẫn đến sự định hướng từ trường của
chúng không ổn định trong môi trường nhiệt độ thông thường ). Chính vì vậy giới
hạn cuối cùng của mật độ phân bố trên ổ cứng chỉ đạt được 100 tới 200 Gbits/ in2.
Đó chính là nguyên nhân dẫn tới sự chậm trễ của việc tăng dung lượng lưu trữ trên ổ
cứng dùng công nghệ ghi theo chiều dọc.
Hình 1.10. Phương pháp ghi theo chiều dọc.
Để dễ hiểu chúng ta sẽ xem các bit như là một thanh nam châm nhỏ. Thông
thường ghi theo chiều dọc, những nam châm đại diện cho các bit nằm liên tiếp gối
nhau dọc theo những track tròn trên đĩa. Nếu các bit này được tích hợp ở mật độ cao
và có những giá trị 0 và 1, sẽ xảy ra trường hợp những nam châm kề sát nhau đối
đầu với nhau (ví dụ như cực bắc với cực bắc ) và đối đuôi nhau (cực nam với cực
nam), lúc đó chúng sẽ tác động qua lại đẩy nhau làm cho chúng ở trạng thái dễ
không ổn định nhất là khi có ảnh hưởng bởi nhiệt độ môi trường. Cũng tương tự như
thế khi các bit đứng gần nhau mà trái đầu nhau và chúng sẽ hút nhau gây nên sự
không ổn định của dữ liệu. Ảnh hưởng này càng lớn khi chúng càng đứng gần nhau
và đó cũng chính là mặt hạn chế của phương pháp ghi theo chiều dọc.
————————————————————————————————————-15
Vật liệu từ và ứng dụng
————————————————————————————————————–
– Ghi vuông góc: từ trường của bit sắp thành hàng thẳng đứng – hoặc vuông góc với chiều quay của đĩa (hình 1.11). Khi đó các bit không trực tiếp đối đầu với nhau
và sự ảnh hưởng lẫn nhau giữa chúng giảm đi đáng kể. Điều đó cho phép các bit
xích lại gần nhau hơn và những tín hiệu truyền được rõ ràng hơn, thuận tiện để phát
hiện những bit lỗi và chỉnh sửa lỗi. Theo nguyên tắc ghi này khả năng mật độ lưu trữ
thông tin trên một in2 được tăng lên. Một ưu thế trong phương pháp ghi vuông góc
chính là tạo được những bit có kích thước rất nhỏ so với phương pháp ghi theo chiều
dọc mà không bị ảnh hưởng bới hiệu ứng Superparamagtic bằng cách lưu trữ thông
tin trên vật liệu trung gian có từ tính mạnh hơn, chính vì thế dữ liệu sẽ có độ ổn định
cao.
Hình 1.11. Phương pháp ghi vuông góc.
Điều ảnh hưởng tới sắp xếp vuông góc của luồng nam châm là hướng qua một
vật liệu từ trường mềm tương đối dày nằm ở lớp bên dưới của màng từ trường cứng.
Lớp từ trường mềm bên dưới có thể tác động lên đầu ghi, làm cho đầu ghi có công
suất mạnh lên và nó có khả năng tạo nên trường ghi lớn hơn, về bản chất nó cũng
tương tự như đầu đọc trong kiểu ghi theo chiều dọc.
————————————————————————————————————-16
Vật liệu từ và ứng dụng
————————————————————————————————————–
1.3.2. Các yêu cầu về vật liệu ghi từ
Đối với vật liệu dùng để chế tạo đầu ghi từ, yêu cầu vật liệu phải có độ từ thẩm
đủ cao tại tần số cao và có thể đạt tới trạng thái bão hòa từ với dòng điện cấp nhỏ
nhất. Vật liệu dùng cho đầu ghi từ bắt buộc phải có độ từ hóa bão hòa cao để có thể
tạo ra các từ trường ghi vượt qua giá trị lực kháng từ của các màng ghi từ (thông
thường vào khoảng 500 ÷ 3000 Oe). Vật liệu Ni 81Fe19 (có giá trị 4πMs ≈ 10 kG)là vật
liệu thường được sử dụng ở dạng màng mỏng trong các đầu ghi từ. Ngoài ra, các vật
liệu như pecmaloi độ cảm từ cao Ni50Fe50, Fe16 N2 ( 4πMs≈ 3T ) cũng được sử dụng.
Vật liệu ghi từ phải có lực kháng từ không quá cao, tương ứng với từ trường đầu
ghi tạo ra được đồng thời lại không quá thấp để vẫn còn giữ được mômen từ dưới
tác dụng của các trường tĩnh từ của các bít xung quanh. Lực kháng từ chỉ nằm trong
khoảng 500÷3000 Oe tức là vật liệu ghi từ nằm ở thang thấp nhất của vật liệu từ
cứng. Vật liệu ghi từ bắt buộc phải có độ từ dư (cảm ứng từ dư B r) đủ lớn sao cho
trường ghi của các đơn đômen được ghi tín hiệu sắp xếp trên bề mặt màng ghi từ với
độ lớn khoảng vài Oe, có thể nhận biết được bằng đầu đọc. Một vật liệu ghi từ đòi
hỏi phải có độ từ hoá bão hoà I S tối thiểu là 500G (µIS ≈ 0,63T) và trong khoảng các
giá trị cao hơn cho tới 1000G.
Vật liệu dùng để chế tạo đầu đọc bắt buộc phải có lực kháng từ thấp, tín hiệu ồn
thấp và có độ từ thẩm rất cao để có thể tương ứng với một sự thay đổi rất nhỏ về
thông lượng từ liên quan tới sự thay đổi của trường ghi yếu trên bề mặt của màng
ghi từ.
Các chức năng đọc và ghi có thể được đặc trưng cùng một đầu cảm ứng nhưng
có những cải tiến để phân biệt các chức năng đọc hay ghi. Khoảng cách từ đầu cảm
ứng (đọc hay ghi) tới màng ghi từ càng nhỏ càng tốt nhưng đòi hỏi phải không để
xảy ra bất cứ sự va chạm nào với màng từ.
1.4. Một số loại đầu ghi và đọc từ
1.4.1. Đầu đọc và ghi trong ổ đĩa mềm
Ổ đĩa mềm (Floppy Disk Drive – FDD) là một thiết bị sử dụng để đọc và ghi dữ
liệu từ các đĩa mềm (hình 1.12). Các đĩa mềm lưu trữ dữ liệu thông qua nguyên lý
————————————————————————————————————-17
Vật liệu từ và ứng dụng
————————————————————————————————————–
lưu trữ từ trên bề mặt, do đó ổ đĩa mềm hoạt động dựa trên nguyên lý đọc và ghi
theo tính chất từ. Đầu đọc/ghi dữ liệu được thiết kế ở cả hai mặt của ổ đĩa, chúng
cùng di chuyển với nhau trong suốt quá trình đọc và cùng thực hiện chức năng đọc
và ghi dữ liệu. Khi thực hiện chức năng ghi, đầu đọc có tiết diện lớn hơn sẽ xóa dữ
liệu cũ, đảm bảo dữ liệu ghi vào không bị nhầm lẫn. Đầu đọc đĩa mềm giữ chặt vùng
trung tâm của vỏ đĩa và làm quay đĩa mềm ở bên trong để truy xuất dữ liệu.
Hình 1.12. Hình ảnh bên trong ổ đĩa mềm.
1.4.2. Đầu đọc và ghi trong ổ đĩa cứng
Ổ đĩa cứng, hay còn gọi là ổ cứng (Hard Disk Drive – HDD) là thiết bị dùng để
lưu trữ dữ liệu trên bề mặt các tấm đĩa hình tròn phủ vật liệu từ tính.
Ổ đĩa cứng là loại bộ nhớ “không thay đổi” (non-volatile), có nghĩa là chúng không
bị mất dữ liệu khi ngừng cung cấp nguồn điện cho chúng. Hình 1.13 là ảnh cấu tạo
bên trong của một ổ đĩa cứng thông dụng ngày nay.
Hình 1.13. Cấu tạo bên trong của một ổ đĩa cứng thông dụng ngày nay.
————————————————————————————————————-18
Vật liệu từ và ứng dụng
————————————————————————————————————–
Đầu đọc đơn giản được cấu tạo gồm lõi ferit (trước đây là lõi sắt) và cuộn
dây (giống như nam châm điện) quấn trên lõi để đưa dòng điện vào (khi ghi) hay lấy
ra (khi đọc), khe hở gọi là khe từ lướt trên bề mặt đĩa với khoảng cách rất gần, bằng
1/10 sợi tóc. Gần đây các công nghệ mới hơn giúp cho ổ đĩa cứng hoạt động với mật
độ xít chặt hơn như: chuyển các hạt từ sắp xếp theo phương vuông góc với bề mặt
đĩa nên các đầu đọc được thiết kế nhỏ gọn và phát triển theo các ứng dụng công
nghệ mới. Đầu đọc trong đĩa cứng có công dụng đọc dữ liệu dưới dạng từ hoá trên
bề mặt đĩa từ hoặc từ hoá lên các mặt đĩa khi ghi dữ liệu. Số đầu đọc ghi luôn bằng
số mặt hoạt động được của các đĩa cứng, có nghĩa chúng nhỏ hơn hoặc bằng hai lần
số đĩa (nhỏ hơn trong trường hợp ví dụ hai đĩa nhưng chỉ sử dụng 3 mặt).
Trong quá trình ghi, tín hiệu điện ở dạng tín hiệu số 0,1 được đưa vào đầu từ
ghi lên bề mặt đĩa thành các nam châm rất nhỏ và đảo chiều tuỳ theo tín hiệu đưa
vào là 0 hay 1 (hình 1.14).
Hình 1.14. Nguyên lý đọc ghi bằng từ trên bề mặt đĩa cứng.
Trong quá trình phát, đầu từ đọc lướt qua bề mặt đĩa dọc theo các đường track đã
được ghi tín hiệu, tại điểm giao nhau của các nam châm có từ trường biến đổi và
cảm ứng lên cuộn dây tạo thành một xung điện, xung điện này rất yếu được đưa vào
khuếch đại để lấy ra tín hiệu 0,1 ban đầu. Dữ liệu được ghi/đọc đồng thời trên mọi
đĩa. Việc thực hiện phân bổ dữ liệu trên các đĩa được thực hiện nhờ các mạch điều
khiển trên bo mạch của ổ đĩa cứng.
Trước kia các đầu đọc/ghi của ổ đĩa cứng thường được chế tạo như trong ổ đĩa
mềm, lõi sắt mềm cộng với 8 đến 34 (hoặc hơn) vòng dây đồng mảnh. Các đầu từ
————————————————————————————————————-19
Vật liệu từ và ứng dụng
————————————————————————————————————–
này có kích thước lớn và tương đối nặng làm hạn chế số rãnh có thể có trên mặt đĩa
mà hệ thống chuyển dịch đầu từ phải khắc phục. Hiện nay, các thiết kế đầu từ đã
loại bỏ các kiểu quấn dây cổ điển mà dùng loại đầu từ màng mỏng. Nó được chế tạo
giống như vi mạch dùng công nghệ quang hóa. Do kích thước nhỏ và nhẹ nên độ
rộng của rãnh ghi cũng nhỏ hơn và thời gian dịch chuyển đầu từ nhanh hơn. Trong
cấu trúc tổng thể, các đầu đọc/ghi này được gắn vào các cánh tay kim loại dài điều
khiển bằng các môtơ. Các vi mạch tiền khuếch đại của đầu từ thường được gắn trên
tấm vi mạch in nhỏ nằm trong bộ dịch chuyển đầu từ. Toàn bộ cấu trúc này được
bọc kín trong hộp đĩa. Nhiều loại đĩa cứng sử dụng môtơ cuộn dây di động (voice
coil motor) còn gọi là môtơ cuộn dây quay (rotary coil) hoặc servo để điều khiển
chuyển động của đầu từ. Thách thức lớn nhất trong việc điều khiển đầu từ là giữ cho
được nó đúng ngay tâm rãnh mong muốn. Nói cách khác là các nhiễu loại khí động
học, các hiệu ứng nhiệt trên đĩa từ và các biến thiên của dòng điều khiển môtơ servo
có thể gây nên sai số trong việc định vị đầu từ. Vị trí của đầu từ phải luôn luôn được
kiểm tra và điều chỉnh kịp thời để đảm bảo vị trí rãnh thật chính xác. Quá trình hiệu
chỉnh đầu từ theo rãnh gọi là phương pháp servo đầu từ. Cần có thông tin để so sánh
vị trí thực và vị trí mong muốn của đầu từ. Thông tin servo dành riêng (Dedicated
servo information) được ghi trên mặt đĩa từ dự trữ. Thông tin servo nhúng
(Embedded servo information) lại được mã hoá thành các chùm dữ liệu ngắn đặt
trên từng sector. Hệ thống servo sử dụng sự lệch pha của các xung tín hiệu của các
rãnh kế cận để xác định đầu từ có được đặt đúng giữa rãnh hay không.
Trong ổ đĩa cứng hiện nay thường sử dụng một số loại đầu đọc như là đầu đọc
AMR, đầu đọc GMR, đầu đọc spin – valve,…
– Đầu ghi AMR:
Đầu ghi AMR là đầu ghi dựa trên hiệu ứng từ điện trở dị hướng ( Anisotropic
magnetoresistance – AMR).
————————————————————————————————————-20
Vật liệu từ và ứng dụng
————————————————————————————————————–
Hình 1.15. Đầu ghi dựa trên hiệu ứng AMR.
AMR là một hiệu ứng từ điện trở mà ở đó tỉ số từ điện trở (sự thay đổi của điện trở
suất dưới tác dụng của từ trường ngoài) phụ thuộc vào hướng của dòng điện (không
đẳng hướng trong mẫu), mà bản chất là sự phụ thuộc của điện trở vào góc tương đối
giữa từ độ và dòng điện.
– Đầu đọc/ghi GMR:
Đầu đọc/ghi GMR là đầu đọc/ghi dựa trên hiệu ứng từ trở khổng lồ GMR. Cấu
trúc của phần tử GMR gồm các lớp sắt từ F được ngăn cách với nhau bởi các lớp phi
từ N.
Hình 1.16. (a)Cấu hình phản sắt từ của GMR; (b) Cấu hình sắt từ của GMR.
Do thuộc tính có spin của điện tử nên các điện tử với chiều spin xác định (spin ↑
hoặc spin ↓) có xác suất tán xạ khác nhau tại bề mặt phân cách giữa các lớp sắt từ và
phi từ, nó phụ thuộc cả vào sự sắp xếp từ độ của các lớp sắt từ. Khi không có từ
————————————————————————————————————-21
Vật liệu từ và ứng dụng
————————————————————————————————————–
trường ngoài, các lớp sắt từ sắp xếp phản song với nhau, cả hai loại điện tử với spin
↑ và spin ↓ đều bị tán xạ như nhau khi đi qua cấu trúc này nên điện trở của cả hệ là
lớn. Từ trường ngoài có tác dụng sắp xếp lại véctơ từ độ của các lớp sắt từ theo
hướng song song với nhau. Khi đó xác suất tán xạ của một trong hai loại spin ↑ hoặc
spin ↓ sẽ giảm xuống và coi như hệ mở thông kênh spin này, các điện tử dẫn sẽ chỉ
chủ yếu là do điện tử với một trong hai loại spin có xác suất tán xạ thấp. Như vậy,
nguyên nhân gây nên hiệu ứng GMR là do sự sắp xếp lại các véctơ từ độ theo hướng
song song với nhau dưới tác dụng của từ trường. Điện trở sẽ đạt được giá trị cao
nhất khi không có từ trường (các véctơ từ độ là hoàn toàn phản song với nhau), còn
khi có từ trường điện trở sẽ giảm xuống do các véctơ từ độ hoàn toàn song song với
nhau. Ta có tỷ số GMR là: GMR = (RAP – RP)/RP
(RAP > Rp)
(1.3)
trong đó RAP là điện trở của cấu hình phản sắt từ, RP là điện trở của cấu hình sắt từ.
Hình 1.17. Đầu đọc/ghi dựa trên hiệu ứng GMR.
– Đầu đọc spin – valve:
Spin – valve là một linh kiện từ tính cấu tạo từ một màng mỏng đa lớp gồm các
lớp sắt từ ngăn cách bởi các lớp phi từ mà ở đó điện trở của hệ thay đổi phụ thuộc
vào sự định hướng của từ độ trong các lớp sắt từ. Tính chất của spin – valve dựa trên
hiệu ứng từ điện trở khổng lồ và được ứng dụng trong các đầu đọc ổ cứng máy tính.
Cơ chế của hiệu ứng được lý giải qua cơ chế “tán xạ phụ thuộc spin” của điện tử. Và
có thể thấy rằng trạng thái của hệ (điện trở cao, điện trở thấp) phụ thuộc vào sự định
hướng tương đối của từ độ của các lớp sắt từ. Có nghĩa là việc từ độ các lớp này
————————————————————————————————————-22
Vật liệu từ và ứng dụng
————————————————————————————————————–
định hướng tương đối với nhau ra sao (song song, phản song song) có thể cho phép
dòng điện tử (dòng spin) được truyền qua hoặc không thể truyền qua, hay nói cách
khác, từ độ của các lớp sắt từ hoạt động như một chiếc van đóng mở spin. Tuy
nhiên, đây là cấu trúc đơn giản với sự quay của các lớp sắt từ theo từ trường khá tự
do và việc điều khiển tín hiệu trở nên khó khăn.
Hiện nay cấu trúc spin valve gồm 4 lớp chính: bên dưới là lớp màng mỏng vật
liệu phản sắt từ (hiện nay sử dụng phổ biến là IrMn…), bên trên lớp này là lớp sắt từ
đầu tiên có từ độ bị ghim bởi lớp phản sắt từ nên có từ độ bị giữ theo một hướng
(gọi là lớp ghim), phía trên là lớp phi từ (hoặc lớp điện
môi), và trên cùng là lớp sắt từ với từ độ quay tự do.
Hình 1.18. Cấu trúc cắt ngang của màng đa lớp spin valve với liên kết phản sắt từ.
Với mô hình này, khi đặt từ trường ngoài chỉ có từ độ của lớp tự do bị quay theo từ
trường ngoài do đó hiệu ứng từ điện trở hầu như chỉ phụ thuộc vào từ độ lớp bên
trên. Từ độ của lớp ghim bên dưới chỉ bị quay đi khi có từ trường ngoài đủ lớn để
phá vỡ liên kết với lớp phản sắt từ (hình 1.19).
————————————————————————————————————-Hình 1.19. Liên kết phản sắt từ trong các
23 màng mỏng đa lớp spin – valve trong các
đầu đọc ổ đĩa cứng.
Vật liệu từ và ứng dụng
————————————————————————————————————–
1.4.3. Đầu đọc và ghi trong ổ đĩa quang
Ổ đĩa quang là một loại thiết bị dùng để đọc đĩa quang, nó sử dụng một loại
thiết bị phát ra một tia laser chiếu vào bề mặt đĩa quang và phản xạ lại trên đầu thu
và được giải mã thành tín hiệu để đọc hoặc ghi trên đĩa tròn (hình 1.20).
Hình 1.20. Hệ thống đèn laser, thấu kính và cảm biến của một ổ đĩa quang.
Chẳng hạn đối với đĩa CD rom, dữ liệu ghi lên đĩa là dạng tín hiệu số 0, 1 ở đầu
ghi, người ta sử dụng súng laser để ghi dữ liệu lên đĩa. Hình 1.21 trình bày nguyên
lý ghi dữ liệu lên đĩa CD rom.
————————————————————————————————————-24
Vật liệu từ và ứng dụng
————————————————————————————————————–
Hình 1.21. Nguyên lý ghi dữ liệu lên đĩa CD rom.
Đĩa quay với tốc độ cao và súng laser sẽ chiếu tia laser lên bề mặt đĩa, tia laser được
điều khiển tắt sáng theo tín hiệu 0 hay 1 đưa vào (ứng với tín hiệu 0 là tia laser tắt,
ứng với tín hiệu 1 là tia laser sáng đốt cháy bề mặt đĩa thành 1 điểm làm mất khả
năng phản xạ).
Còn đối với quá trình đọc dữ liệu ghi từ đĩa CD rom, người ta sử dụng tia laser ( yếu
hơn lúc ghi ) chiếu lên bề mặt đĩa dọc theo các đường track có dữ liệu, sau đó hứng
lấy tia phản xạ quay lại rồi đổi chúng thành tín hiệu điện. Khi tia laser chiếu qua các
điểm trên bề mặt đĩa bị đốt cháy sẽ không có tia phản xạ và tín hiệu thu được là 0.
Khi tia laser chiếu qua các điểm trên bề mặt đĩa không bị đốt cháy sẽ có tia phản xạ
và tín hiệu thu được là 1. Tia phản xạ sẽ được ma trận diode đổi thành tín hiệu điện,
sau khi khuếch đại và xử lý ta thu được tín hiệu ban đầu. Hình 1.22 trình bày nguyên
lý đọc tín hiệu từ đĩa CD rom.
Hình 1.22. Nguyên lý đọc tín hiệu từ đĩa CD rom.
————————————————————————————————————-25
kể đến là : • Các loại thép nam châm hút • Các nam châm hút trên cơ sở kim loại tổng hợp sắt từ mà nổi bật là những nam châm hút hợpkim AlNiCo • Các nam châm hút ferit • Các nam châm hút đất hiếm trên cơ sở coban • Các nam châm hút đất hiếm NdFeB. Các vật liệu từ cứng được sử dụng làm nam châm từ vĩnh cửu, ứng dụng trong rấtnhiều nghành khác nhau của đời sống và kỹ thuật. Nam châm vĩnh cửu được sửdụng ở dạng đơn thuần trong những thiết bị như những động cơ, máy phát, khởi động điệntừ, loa điện động … và trong những linh phụ kiện công nghệ cao như những những cảm ứng, đĩaghi từ tỷ lệ cao, vi khởi động điện từ … Trong thực trạng khủng hoảng cục bộ về nănglượng và ô nhiễm môi trường tự nhiên như lúc bấy giờ, yếu tố sử dụng những nguồn năng lượngtái tạo lại đang được toàn quốc tế đặc biệt quan trọng chăm sóc và tăng trưởng can đảm và mạnh mẽ. Namchâm vĩnh cửu đóng vai trò quan trọng không hề thiếu được trong hầu hết những thiếtbị quy đổi những dạng nguồn năng lượng đó thành nguồn năng lượng điện. Có thể phân loại những ứng dụng của nam châm hút vĩnh cửu trong những thiết bị trêncơ sở tính năng của chúng như sau : • Nam châm vĩnh cửu dùng để biến đối điện năng thành cơ năng ( cácloại động cơ ) và biến hóa cơ năng thành điện năng ( những loại máy phát ) • Nam châm vĩnh cửu dùng để tạo lực tính năng lên những vật liệu dẫn từ ( vật liệu từ mềm, biến thế, nâng bằng từ, đồ chơi, vật liệu từ gia dụng, v.v … ) ————————————————————————————————————- 2V ật liệu từ và ứng dụng ————————————————————————————————————– • Nam châm vĩnh cửu xu thế theo hướng từ trường ngoài ( kim địabàn … ) • Nam châm vĩnh cửu dùng để tạo lực tính năng lên những hạt điện tíchchuyển độngVật liệu từ cứng hoàn toàn có thể dùng để sản xuất những nam châm hút vĩnh cửu hoặc được sử dụnglàm vật liệu ghi từ trong những ổ đĩa cứng, những băng từ. Một số loại nam châm từ vĩnh cửu đã sản xuất được từ vật liệu từ cứng là : + ) Nam châm AlNiCo : là loại nam châm từ được sản xuất từ những kim loại tổng hợp củanhôm, niken, côban và 1 số ít những phụ gia khác như đồng, titan … Đây là loại namchâm cho từ dư cao ( tới 1.2 – 1.5 T ) nhưng có lực kháng từ chỉ xung quanh 1 kOe, đồng thời giá thành cũng khá cao nên lúc bấy giờ tỉ lệ sử dụng ngày càng giảm dần. + ) Ferrite từ cứng : là loại nam châm từ vĩnh cửu được sản xuất từ những ferit từcứng ( như ferit Ba, Sr … ) là những vật liệu dạng gốm và hoàn toàn có thể bổ trợ những nguyên tốđất hiếm để cải tổ tính từ cứng. Loại nam châm từ này có hàm lượng ôxy cao nên cótừ độ khá thấp, có lực kháng từ từ 3 đến 6 kOe, có năng lực cho tích nguồn năng lượng từcực đại lớn nhất không quá 6MGO e. Hiện nay loại nam châm từ này chiếm tới hơn50 % thị trường sử dụng do những ưu điểm về giá tiền cực rẻ, sản xuất và gia công rấtdễ, độ bền cao. + ) Nam châm đất hiếm : là loại nam châm từ vĩnh cửu được tạo ra từ những hợpkim hoặc hợp chất của những sắt kẽm kim loại đất hiếm và sắt kẽm kim loại chuyển tiếp. Nam châm nhiệt độ cao SmCo : là hệ những nam châm hút vĩnh cửu được sản xuất từhợp chất khởi đầu là SmCo5 được ý tưởng năm 1966 bởi tiến sỹ Karl J. Strnat củaU. S. Air Force Materials Laboratory có tích nguồn năng lượng từ cực lớn 18 MGOe, sau đóKarl J. Strnat lại ý tưởng ra hợp chất Sm2Co17 có tích nguồn năng lượng từ tới 30 MGOevào năm 1972. Hệ nam châm hút SmCo có nhiệt độ Curie rất cao ( hoàn toàn có thể đạt tới 1100 oC ) và có lực kháng từ cực lớn ( tới vài chục kOe ) nhờ cấu trúc dạng lá đặc biệt quan trọng. Vì thế, loại nam châm từ này được sử dụng trong những ứng dụng nhiệt độ cao ( ví dụ trong độngcơ phản lực … ). Nam châm NdFeB ( neodymium ) : là hệ những nam châm hút dựa trên hợp chấtR2Fe14B ( R là ký hiệu chỉ những nguyên tố đất hiếm ví dụ như Nd, Pr … ) có cấu trúctinh thể kiểu tứ giác với lực kháng từ lớn ( hơn 10 kOe ) và từ độ bão hòa rất cao ( tới1, 56 T ) nên là loại nam châm hút vĩnh cửu mạnh nhất lúc bấy giờ với năng lực cho tích————————————————————————————————————-3Vật liệu từ và ứng dụng————————————————————————————————————–năng lượng từ tới 64 MGOe ( thống kê giám sát theo kim chỉ nan ). Năm 1983 nam châmNd2Fe14B lần tiên phong được ý tưởng bởi R. Sagawa ( Nhật Bản ) có tích năng lượngtừ 57 MGOe. Tuy nhiên, loại nam châm từ này lại không hề sử dụng ở nhiệt độ cao docó nhiệt độ Curie chỉ 312 oC. Nam châm đất hiếm NdFeB được sử dụng trong ổ cứng máy tính ( hình 1.1 ). Hình 1.1. Hình ảnh nam châm hút đất hiếm NdFeBĐiểm yếu chung của những nam châm hút đất hiếm là có giá tiền cao ( do chứađược sử dụng trong ổ cứng máy tính. nhiều những nguyên tố đất hiếm đắt tiền ), có độ bền kém ( do những nguyên tố đất hiếm cótính ôxy hóa rất cao ). Vì vậy những nam châm từ đất hiếm vẫn không phải là loại được sửdụng nhiều nhất ( đứng sau nam châm từ ferit ). + ) Nam châm tổng hợp nano : là loại nam châm từ mới sinh ra từ đầu thập kỷ 90 của thế kỷ 20, có cấu trúc tổng hợp của 2 pha từ cứng và từ mềm ở kích thướcnanomet. Các pha từ cứng ( chiếm tỉ phần thấp ) cung ứng lực kháng từ lớn, pha từmềm phân phối từ độ lớn. Tính chất tổng hợp này có được là nhờ link trao đổi đànhồi giữa những hạt pha từ cứng và từ mềm ở kích cỡ nanomet. Loại nam châm từ nàyđược thống kê giám sát có năng lực cho tích nguồn năng lượng từ khổng lồ hơn 3 lần so với namchâm mạnh nhất lúc bấy giờ là NdFeB nhưng thực nghiệm mới chỉ đạt được rất nhỏ sovới triết lý và những mẫu sản phẩm thực nghiệm mới trong tiến trình sản xuất thử nghiệm. Ngoài ra còn nhiều loại nam châm từ với những đặc thù khác nhau nữa. Tùy theonhu cầu sử dụng mà người ta sản xuất những loại nam châm từ khác nhau. Những lĩnh vựcứng dụng đa phần của những nam châm từ là loa điện, môtơ điện, những thiết bị đo điện, … Trong vài năm gần đây khoanh vùng phạm vi ứng dụng nam châm từ vĩnh cửu lan rộng ra rất nhiều, đặc biệt quan trọng trong những ngành điện, điện tử, giao thông vận tải vận tải đường bộ, y sinh học. Các máy phátđiện chạy bằng sức gió, sức nước dùng động cơ nam châm từ vĩnh cửu góp thêm phần bổsung nguồn nguồn năng lượng thiếu vắng và ngày càng đắt đỏ trên toàn cầu, những môtơ mộtchiều cho xe đạp điện, xe máy, ôtô chạy điện giảm ô nhiễm thiên nhiên và môi trường. Các viên từ chữa————————————————————————————————————-4Vật liệu từ và ứng dụng————————————————————————————————————–đau đầu, đau khớp, huyết áp cao … được sử dụng ngày một thông dụng. Đặc biệt cáchạt bột từ cỡ nano mét trong chất lỏng từ để tải thuốc tới chữa trị những khối u đangđược chăm sóc điều tra và nghiên cứu. Chính bởi những ứng dụng rất là nhiều mẫu mã và đadạng này mà sản lượng nam châm từ không ngừng được tăng trưởng. 1.1.2. Ứng dụng của vật liệu từ mềmCác vật liệu từ mềm rất phong phú, khối lượng sử dụng lớn, được ứng dụngtrong nhiều nghành khác nhau. Các vật liệu từ mềm được sử dụng làm những vật dẫntừ trong những đường dây tải điện, những máy biến thế, những máy điện, những rơle, những máyđo, lõi những cuộn cảm, những màn chắn từ, … Vật liệu từ mềm đóng vai trò như mộtkhuếch đại cảm ứng từ. Ngoài ra, còn có 1 số ít nhu yếu riêng cho những ứng dụng cụthể. Ví dụ, khi vật liệu từ mềm được dùng làm màn chắn từ để chắn không chođường sức từ xuyên qua nó thì nhu yếu hầu hết của vật liệu là, độ từ thẩm ban đầuμ0 và độ từ thẩm cực lớn μ max phải cao. Nếu dùng vật liệu từ mềm làm biến thế xungthì đường từ hóa khởi đầu của vật liệu càng dốc đứng thì vận tốc tăng xung càng lớn. Có nhiều loại vật liệu từ mềm đã được nghiên cứu và điều tra, ché tạo và ứng dụng vớicác mục tiêu khác nhau. Các vật liệu từ mềm chính hoàn toàn có thể kể đến là : Kim loại, kim loại tổng hợp từ mềm ( sắt tinh khiết kỹ thuật, thép kỹ thuật điện, permalloys … ) Điện môi từFerit từ mềmVật liệu từ mềm vô định hình và có size nanomet. Vật liệu từ mềm được ứng dụng làm lõi dẫn từ trong máy biến thế, lõi cuộn cảm, lõi tạo từ trường trong nam châm từ điện, cảm ứng đo từ trường … Các vật liệu ferit cóđiện trở suất lớn ( tới 106 Ωcm ) được sử dụng rất hiệu suất cao trong nghành cao tần. Nhiều loại vật liệu có tính từ giảo được sử dụng làm thiết bị siêu âm. Máy biến thế hay máy biến áp là thiết bị điện hoàn toàn có thể biến hóa hiệu điện thế xoaychiều, tăng thế hoặc hạ thế, đầu ra cho một hiệu điện thế tương ứng với nhu yếu sửdụng và đóng vai trò rất quan trọng trong truyền tải điện năng. Cấu tạo cơ bản của————————————————————————————————————-5Vật liệu từ và ứng dụng————————————————————————————————————–máy biến thế thường là hai hay nhiều cuộn dây đồng cách điện được quấn trên cùngmột lõi sắt hay sắt từ ferit ( hình 1.2 ). Hình 1.2. Hình ảnh bên trong của một máy biếnthế. Cuộn cảm là một linh phụ kiện điện tử thụ động, thường dùng trong mạch điện códòng điện đổi khác theo thời hạn ( như những mạch điện xoay chiều ). Cuộn cảm có tácdụng tàng trữ nguồn năng lượng ở dạng từ năng ( nguồn năng lượng của từ trường tạo ra bởi cuộncảm khi dòng điện đi qua ) và làm dòng điện bị trễ pha so với điện áp một góc bằng90 °. Hình 1.3 là một ví dụ về cuộn cảm có lõi làm bằng ferit. Hình 1.3. Ảnh chụp những lõi ferrite trong những cuộn cảm sử dụng ở tần số cao ( dẫn sóng, tách sóng ). Nam châm điện là một dụng cụ tạo từ trường hay một nguồn sản sinh từtrường hoạt động giải trí nhờ từ trường sinh ra bởi cuộn dây có dòng điện lớn chạy qua. Cảm ứng từ của nam châm từ điện được dẫn và tạo thành lớn nhờ việc sử dụng một lõidẫn từ làm bằng vật liệu từ mềm có độ từ thẩm lớn và cảm ứng từ bão hòa cao. Khácvới nam châm từ vĩnh cửu có cảm ứng từ cố định và thắt chặt, nam châm hút điện có cảm ứng từ có thểthay đổi được nhờ việc tinh chỉnh và điều khiển dòng điện chạy qua cuộn dây. Nam châm điện lần————————————————————————————————————-6Vật liệu từ và ứng dụng————————————————————————————————————–đầu tiên được ý tưởng bởi nhà điện học người Anh William Sturgeon ( 1783 – 1850 ) vào năm 1825 ( hình 1.4 ). Hình 1.4. Hình ảnh nam châm hút điện tiên phong làm từ một lõi sắt non. Nam châm điện của Sturgeon là một lõi sắt non hình móng ngựa có một sốvòng dây điện cuốn quanh. Khi cho dòng điện sinh ra bởi một pin nhỏ chạy qua, lõisắt bị từ hóa và cảm ứng từ sinh ra đủ mạnh để hút lên được một hộp sắt nặng 7 ounce. Khi ngắt dòng điện, từ trường của lõi cũng biến mất. Cảm biến đo từ trường lúc bấy giờ thường dùng những màng mỏng dính từ mềm. Hình1. 5 là cấu trúc của một cảm ứng sử dụng hiệu ứng từ trở ( Magnetoresistance – MR là sự biến hóa điện trở suất của vật liệu dưới công dụng của từ trường ngoài ) và mộtcảm biến sử dụng hiệu ứng từ trở khổng lồ ( Giant Magnetoresistance – GMR – là sựthay đổi lớn của điện trở ở những vật liệu từ dưới tính năng của từ trường ngoài ). Haiđầu cảm ứng là hai lớp chắn từ không cho từ trường bên ngoài làm tác động ảnh hưởng đếnlớp ở giữa. Ở giữa là màng đa lớp gồm 4 lớp màng mỏng mảnh : lớp sensing ( làm từ NiFe ), lớp spacer ( vật liệu đồng ), lớp pinned ( làm từ Co ) và lớp exchange. Ba lớp đầu rấtmỏng, được cho phép những electron dẫn hoàn toàn có thể vận động và di chuyển tự do từ lớp sensing sang lớppinned và ngược lại trải qua lớp spacer. Hướng từ hóa của lớp pinned là cố định và thắt chặt, trong khi hướng từ hóa của lớp sensing hoàn toàn có thể đổi khác theo từ trường ngoài. Khi lớppinned và lớp sensing có cùng hướng mômen từ, những điện tử có spin song song vớimômen từ này sẽ chuyển dời tự do trong cả hai lớp màng mỏng mảnh, và điện trở thu đượclà nhỏ. Khi ta đổi hướng từ hóa lớp sensing, lớp pinned và lớp sensing có mô men từngược hướng nhau, thì khi đó điện tử có spin hướng lên bị cản trở bởi một lớp màng————————————————————————————————————-7Vật liệu từ và ứng dụng————————————————————————————————————–từ, và điện tử có spin hướng xuống sẽ bị cản trở bởi lớp màng từ còn lại, hiệu quả làđiện trở thu được rất lớn. Hình 1.5. Cấu tạo của cảm ứng MR và cảm ứng GMRsử dụng trong ổ đĩa cứng. 1.2. Các nhu yếu về đặc thù từ của vật liệu từ cứng và vật liệu từ mềmTính mềm / cứng không nằm ở đặc thù cơ học, mà nằm ở năng lực khó haydễ bị từ hoá và khử từ. Như vậy, thông số kỹ thuật khởi đầu nói lên tính cứng / mềm là giá trịlực kháng từ HC. Các đường cong từ trễ ở hình 1.6 là một cách phân loại tương đốivật liệu từ mềm / cứng. Ta thấy rằng những vật liệu từ mềm có giá trị H C nhỏ ( thườngdưới 102 Oe. Trong khi những vật liệu từ cứng có HC lớn trên 102 Oe. ————————————————————————————————————- 8V ật liệu từ và ứng dụng————————————————————————————————————–Hình 1.6. Các đường cong từ trễ của vật liệu từ cứng và vật liệu từ mềm. Ba nhu yếu chung cho những vật liệu từ mềm là : • Từ hóa dễ, nghĩa là khi từ trường ngoài H đặt vào để từ hóa vật liệu vớigiá trị nhỏ mà cảm ứng từ B đã đạt được khá lớn ( vật liệu có giá trị μ 0 lớn, μmax lớnvà Hc nhỏ ). • Cảm ứng từ cực lớn Bs có giá trị cao. Điều này có nghĩa là, những vật liệu từmềm với một thể tích không đổi, số đường sức từ qua nó càng nhiều càng giảm đượckích thước của vật liệu sử dụng. Có thể hai điều kiện kèm theo trên không thỏa mãn nhu cầu đồng thời trong 1 loại vật liệu. • Khi sử dụng những vật liệu từ mềm trong từ trường xoay chiều sẽ xuất hiệntổn hao, nhu yếu tổn hao càng nhỏ càng ít. Vật liệu từ mềm có độ từ thẩm μ phải càng lớn càng tốt, vì ta biết quan hệB = μ0. μ. H, nghĩa là nếu ta có giá trị μ lớn, ta hoàn toàn có thể tạo ra một cảm ứng từ rất lớn chỉbằng một từ trường ngoài không cần lớn. Độ từ thẩm của vật liệu từ mềm khôngnhững lớn, mà còn phụ thuộc vào vào từ trường, vì vậy, người ta còn dùng hai thông sốvề độ từ thẩm của vật liệu từ mềm để nói lên tính ” mềm ” của nó, đó là : – Độ từ thẩm khởi đầu µi ( initial permeability ) là độ từ thẩm tại giá trị H = 0, đượcH → 0 Hxác định bằng tỉ số : µi = lim ( 1.1 ) ————————————————————————————————————- 9V ật liệu từ và ứng dụng ————————————————————————————————————— Độ từ thẩm cực lớn µmax ( maximum permeability ) là giá trị cực lớn của độ từthẩm, không phụ thuộc vào vào từ trường ngoài, chỉ nhờ vào vào thực chất vật liệu. Hình 1.7. Đường cong từ trễ của vật liệu từ mềmvà những thông số kỹ thuật đặc trưng của nó trên đường trễ. Từ độ bão hoà BS của vật liệu từ mềm thường rất lớn, trong khi vật liệu từcứng thường có từ độ bão hòa nhỏ. Cảm ứng từ dư B r là cảm ứng từ còn dư sau khi ngắt từ trường. Vật liệu từcứng có cảm ứng từ dư khá cao và phần nhiều còn nguyên vẹn sau khi ngắt từ trườngtừ hóa, muốn triệt tiêu nó thì ta phải từ hóa vật theo chiều ngược lại với một từtrường khử lớn ( tới hàng trăm kA / m ). Trái lại so với vật liệu từ mềm, sau khi ngắttừ trường từ hóa thì cảm ứng từ dư của vật biến mất hoặc chỉ còn rất nhỏ, rất dễ khửmất nó bằng một từ trường khử rất bé ( cỡ vài trăm A / m ). Đối với vật liệu từ mềm, một thông số kỹ thuật khác mà người ta chăm sóc đến là tổnhao trễ, hay nguồn năng lượng bị mất mát trong một quy trình từ trễ ( hysteresis loss ), đượctính bằng diện tích quy hoạnh số lượng giới hạn bởi đường cong từ trễ. Vật liệu từ mềm tốt, ngoài cácyếu tố HC nhỏ, μ cao, IS lớn, còn cần có tổn hao trễ càng nhỏ càng tốt. Nhưng khi vậtliệu được sử dụng trong từ trường xoay chiều ( ví dụ như lõi biến thế ), lại phát sinhra một tổn hao khác đáng quan tâm, đó là tổn hao dòng xoáy ( Eddy current loss ) do khiđặt vào từ trường xoay chiều, Open dòng Foucault chạy kín trong lõi làm toảnhiệt trên lõi. Công suất toả nhiệt được cho bởi công thức : ————————————————————————————————————- 10V ật liệu từ và ứng dụng————————————————————————————————————–PEddy = 4. BS2. d 2. k 2 f. f 23. γ. ρ ( 1.2 ) với BS là cảm ứng từ bão hoà của lõi ( vật liệu từ mềm chỉ cần bão hoà từ trong từtrường rất nhỏ so với IS nên cũng hoàn toàn có thể nói rằng cảm ứng từ B cũng có xu hướngđến giá trị bão hoà ), d là độ dày của lõi, k f là một thông số đặc trưng, f là tần số của từtrường xoay chiều, γ là khối lượng riêng của vật liệu, ρ là điện trở suất. Điều này lýgiải tại sao những vật liệu từ mềm nền sắt kẽm kim loại ( ví dụ như lõi FeSi ) không hề dùngở tần số cao bởi chúng có điện trở suất nhỏ sẽ gây tổn hao Foucault lớn, mà phảidùng những ferrite từ mềm có điện trở suất rất lớn ( vật liệu gốm ) nhằm mục đích giảm dòngFoucault. Công thức ( 1.2 ) cũng lý giải cho ta tại sao người ta phải sản xuất những lõibiến thế có dạng những lá mỏng mảnh ( d nhỏ ) vì để giảm dòng Foucault. Chú ý khi sử dụngvật liệu từ mềm ở tần số càng cao thì phẩm chất của vật liệu càng bị suy giảm, do đósự biến hóa của phẩm chất theo tần số là một thông số kỹ thuật rất đáng chăm sóc. Ngoài ra, việc khử từ giảo ( từ giảo là sự biến hóa hình dạng vật liệu từ dưới công dụng của từtrường ngoài ) giúp cho việc tạo ra tính từ mềm tốt. Có những vật liệu có từ giảobằng 0 như vật liệu vô định hình nền Co. Ngoài những nhu yếu chính đã nêu trên còn có 1 số ít nhu yếu khác khi sử dụng vậtliệu từ mềm trong những ứng dụng đơn cử. Các thông số kỹ thuật từ cần phải không thay đổi trongkhoảng nhiệt độ và thời hạn sử dụng. Nói chung, so với vật liệu từ mềm, giá trị từthẩm càng cao càng tốt. Các vật liệu từ cứng phải có lực kháng từ H c lớn, cảm ứng từ dư lớn và tíchnăng lượng cực lớn lớn. Ngoài ra để ứng dụng được trong thực tế vật liệu làm namchâm vĩnh cửu phải là vật liệu sắt từ có dị hướng đơn trục c và có nhiệt độ Curie caohơn nhiều so với nhiệt độ phòng. Vật liệu phải có độ bền cơ học, hóa học ( bền trongmôi trường sử dụng ) và giá tiền phải rẻ hoặc hoàn toàn có thể gật đầu được. Một số vậtliệu từ cứng được ứng dụng trong những nam châm hút hoạt động giải trí ở nhiệt độ cao nên nóđòi hỏi nhiệt độ Curie rất cao ( nhiệt độ Curie là nhiệt độ mà tại đó vật liệu bị mất từtính trở thành chất thuận từ ). Loại vật liệu từ cứng có nhiệt độ Curie cao nhất hiệnnay là nhóm những vật liệu trên nền SmCo ( từ 500 oC đến trên 1000 oC ). Các đặc trưng cơ bản của nam châm từ từ cứng là : ————————————————————————————————————- 11V ật liệu từ và ứng dụng ————————————————————————————————————– • Lực kháng từ HcĐây là đại lượng quan trọng của vật liệu từ cứng, lực kháng từ H c có giá trịcàng lớn càng tốt. Nguồn gốc của lực kháng từ lớn trong những vật liệu từ cứng chủyếu tương quan đến đến dị hướng từ tinh thể lớn trong vật liệu. Các vật liệu từ cứngthường có cấu trúc tinh thể có tính đối xứng kém hơn so với những vật liệu từ mềm vàchúng có dị hướng từ tinh thể rất lớn, nghĩa là có tính bất đối xứng rất cao về mặttinh thể học ( như những kiểu cấu trúc tinh thể lục giác, tứ giác … ) và thường là những vậtliệu có dị hướng đơn trục ( tức là có một trục dễ từ hoá ). Vì vậy, muốn bão hoà mộtvật liệu từ mềm, ta chỉ cần một từ trường cỡ vài trăm Oe hay cùng lắm đến vài ngànOe nhưng để bão hoà một vật liệu từ cứng, ta cần từ trường cỡ vài chục đến vài trămngàn Oe. Để tạo ra vật liệu từ cứng tốt, người ta thường tạo ra nó gồm những hạt có cấutrúc đơn đômen, tức là mỗi hạt chỉ là một đômen từ tính, và chính sách hòn đảo từ sẽ là cơchế quay phối hợp những mômen từ ( chính sách quay – rotation mechanism ) hoặc cơ chếhãm sự tăng trưởng của mầm hòn đảo từ ( nucleation field mechanism ). • Cảm ứng từ dư Br, đường cong khử từ và tích nguồn năng lượng cực lớn ( bh ) maxCảm ứng từ dư Br là thông số kỹ thuật dặc trưng của vật liệu từ cứng. Cùng với H cngười ta tìm cách tăng giá trị Br của vật liệu để nam châm từ có ( Bảo hành ) max đạt giá trịcao. Đường cong từ trễ là cách thông dụng nhất để bộc lộ đặc thù vĩ mô của vậtliệu. Đường cong từ trễ thuộc góc phần tư cung thứ hai gọi là đường cong khử từ. Một thông số kỹ thuật quan trọng khác được chăm sóc của vật liệu từ cứng là tích năng lượngtừ cực lớn ( Maximum Energy Product ), đó là nguồn năng lượng cực lớn có năng lực tíchtrữ trong một đơn vị chức năng thể tích vật từ. Khi vật liệu từ cứng đặt trong từ trong từ trườngngoài đã tự nạp nguồn năng lượng và tàng trữ phần nhiều nguồn năng lượng đó khi lấy từ trườngngoài đi. Năng lượng này được giải phóng nếu vật liệu chịu tính năng của trườngkháng từ. Theo kim chỉ nan thì giá trị ( Bảo hành ) max được xác lập bằng biểu thức sau : ( bh ) max = Br2 / 4 μ0 [ kJ / m3 ], hoặc ( Bảo hành ) max = Br2 / 4 [ MGOe ] Tích nguồn năng lượng từ cực lớn được xác lập trên đường cong từ trễ ở góc phần tư thứ2, là điểm có giá trị tích B.H lớn nhất. Giá trị nguồn năng lượng cực lớn nhờ vào và H c, Brvà thông số lồi của đường cong khử từ .. Tích nguồn năng lượng từ cực lớn nói lên độ mạnh————————————————————————————————————-12Bảng1. 1. Bảng so sánh những nhu yếu về đặc thù từ của vật liệu từ cứng và vật liệu từmềm. Vật liệu từ và ứng dụng————————————————————————————————————–yếu của một nam châm hút. Vì thế đường cong từ trễ I ( H ) càng có dạng hình chữ nhậtcàng tốt. Hình 1.8. Cách xác lập tích nguồn năng lượng từ cực lớn trên đường cong từ trễcủa vật liệu từ cứng. Bảng1. 1. Bảng so sánh những nhu yếu về đặc thù từcủa vật liệu từ cứng và vật liệu từ mềm. Vật liệu từ cứngVật liệu từ mềm ( Hard magnetic materials ) ( Soft magnetic materials ) Là nhóm những vật liệu khó khử từ và khó Là những vật liệu dễ từ hoá và cũng dễtừ hoá. khử từ. Lực kháng từ HC lớn. Lực kháng từ HC nhỏ. Độ từ thẩm µ nhỏ. Độ từ thẩm µ cao. Độ từ hóa bão hòa IS nhỏ. Độ từ hóa bão hòa IS lớn. Cảm ứng từ dư Br khá cao, cường độ Cảm ứng từ dư Br khá nhỏ, cường độtrường khử từ khá lớn. trường khử từ rất nhỏ. Tích nguồn năng lượng từ cực lớn ( B.H ) max Độ tổn hao từ trễ thấp. cao. 1.3. Nguyên tắc ghi từ và những nhu yếu về vật liệu ghi từ1. 3.1. Nguyên tắc ghi từ————————————————————————————————————-13Vật liệu từ và ứng dụng————————————————————————————————————–Cơ chế ghi dựa trên từ trường sinh bởi dòng điện đi qua ống xoắn. Các xungđộng được gửi đến đầu từ, sau đó những khuôn dạng từ khác nhau ứng với những dòngđiện âm / dương sẽ được ghi lên mặt phẳng đĩa ở bên dưới. Đầu từ là một thiết bị tươngđối nhỏ có năng lực đọc / ghi từ / lên một phần của tấm đĩa quay bên dưới. Đó là mộtcuộn dây quấn xung quanh một lõi ( vật liệu từ ) có xẻ một khe ( hình 1.9 ). Dữ liệuđược đưa vào ( hay “ ghi ” ) bằng tín hiệu điện qua cuộn dây làm lõi từ sinh một từtrường đi qua khe. Từ trường này sẽ từ hóa một khu vực rất nhỏ trên đĩa hoặc băng. Khi ngắt trường, sự từ hóa vẫn còn lưu lại và tín hiệu đã được tàng trữ. Cũng chínhđầu từ đó được dùng để tái hiện thông tin đã tàng trữ. Khi băng hoặc đĩa đi qua khecủa đầu từ, mỗi một biến hóa của từ trường băng ( đĩa ) sẽ sinh ra một điện áp cảmứng trong cuộn dây đầu từ. Điện áp này được khuếch đại rồi chuyển về dạng nguyêngốc. Dữ liệu được đọc và ghi trải qua những dãy bit ( đơn vị chức năng nhỏ nhất của tài liệu số ). Một bit chỉ có hai trạng thái 0, 1 hay bật / tắt. Hình 1.9. Nguyên tắc ghi từ. Có hai giải pháp ghi từ là ghi theo chiều dọc và ghi vuông góc : – Ghi theo chiều dọc : là ghi từ trường theo chiều dọc, trong đó sự từ hoá của mỗibit tài liệu sắp theo hàng ngang với sự quay của đĩa. Trong kiểu ghi theo chiều dọc, những trường giữa những bit kề sát nhau mà có trường ngược nhau được tách riêngbằng một vùng chuyển tiếp ( transition region ) như trên hình 1.10. Mật độ phân bổ làtổng số tài liệu được tàng trữ trên ổ cứng trên một inch vuông, được tính bằng bằngsố track / inch nhân với số bit / inch. Giới hạn của tỷ lệ phân bổ so với công nghệ————————————————————————————————————-14Vật liệu từ và ứng dụng————————————————————————————————————–ghi theo chiều dọc nhờ vào vào hiệu ứng Superparamagtic ( Điểm mà tại đó nhữngvùng từ trường rời rạc của mặt phẳng đĩa quá nhỏ dẫn đến sự xu thế từ trường củachúng không không thay đổi trong thiên nhiên và môi trường nhiệt độ thường thì ). Chính thế cho nên giớihạn sau cuối của tỷ lệ phân bổ trên ổ cứng chỉ đạt được 100 tới 200 Gbits / in2. Đó chính là nguyên do dẫn tới sự chậm trễ của việc tăng dung tích tàng trữ trên ổcứng dùng công nghệ tiên tiến ghi theo chiều dọc. Hình 1.10. Phương pháp ghi theo chiều dọc. Để dễ hiểu tất cả chúng ta sẽ xem những bit như thể một thanh nam châm từ nhỏ. Thôngthường ghi theo chiều dọc, những nam châm từ đại diện thay mặt cho những bit nằm liên tục gốinhau dọc theo những track tròn trên đĩa. Nếu những bit này được tích hợp ở tỷ lệ caovà có những giá trị 0 và 1, sẽ xảy ra trường hợp những nam châm từ kề sát nhau đốiđầu với nhau ( ví dụ như cực bắc với cực bắc ) và đối đuôi nhau ( cực nam với cựcnam ), lúc đó chúng sẽ tác động ảnh hưởng qua lại đẩy nhau làm cho chúng ở trạng thái dễkhông không thay đổi nhất là khi có tác động ảnh hưởng bởi nhiệt độ môi trường tự nhiên. Cũng tương tự như nhưthế khi những bit đứng gần nhau mà trái đầu nhau và chúng sẽ hút nhau gây nên sựkhông không thay đổi của tài liệu. Ảnh hưởng này càng lớn khi chúng càng đứng gần nhauvà đó cũng chính là mặt hạn chế của giải pháp ghi theo chiều dọc. ————————————————————————————————————- 15V ật liệu từ và ứng dụng ————————————————————————————————————— Ghi vuông góc : từ trường của bit sắp thành hàng thẳng đứng – hoặc vuông góc với chiều quay của đĩa ( hình 1.11 ). Khi đó những bit không trực tiếp cạnh tranh đối đầu với nhauvà sự tác động ảnh hưởng lẫn nhau giữa chúng giảm đi đáng kể. Điều đó được cho phép những bitxích lại gần nhau hơn và những tín hiệu truyền được rõ ràng hơn, thuận tiện để pháthiện những bit lỗi và chỉnh sửa lỗi. Theo nguyên tắc ghi này năng lực tỷ lệ lưu trữthông tin trên một in2 được tăng lên. Một lợi thế trong chiêu thức ghi vuông gócchính là tạo được những bit có size rất nhỏ so với giải pháp ghi theo chiềudọc mà không bị tác động ảnh hưởng bới hiệu ứng Superparamagtic bằng cách tàng trữ thôngtin trên vật liệu trung gian có từ tính mạnh hơn, chính cho nên vì thế tài liệu sẽ có độ ổn địnhcao. Hình 1.11. Phương pháp ghi vuông góc. Điều tác động ảnh hưởng tới sắp xếp vuông góc của luồng nam châm từ là hướng qua mộtvật liệu từ trường mềm tương đối dày nằm ở lớp bên dưới của màng từ trường cứng. Lớp từ trường mềm bên dưới hoàn toàn có thể tác động ảnh hưởng lên đầu ghi, làm cho đầu ghi có côngsuất mạnh lên và nó có năng lực tạo nên trường ghi lớn hơn, về thực chất nó cũngtương tự như đầu đọc trong kiểu ghi theo chiều dọc. ————————————————————————————————————- 16V ật liệu từ và ứng dụng————————————————————————————————————–1. 3.2. Các nhu yếu về vật liệu ghi từĐối với vật liệu dùng để sản xuất đầu ghi từ, nhu yếu vật liệu phải có độ từ thẩmđủ cao tại tần số cao và hoàn toàn có thể đạt tới trạng thái bão hòa từ với dòng điện cấp nhỏnhất. Vật liệu dùng cho đầu ghi từ bắt buộc phải có độ từ hóa bão hòa cao để có thểtạo ra những từ trường ghi vượt qua giá trị lực kháng từ của những màng ghi từ ( thôngthường vào thời gian 500 ÷ 3000 Oe ). Vật liệu Ni 81F e19 ( có giá trị 4 πMs ≈ 10 kG ) là vậtliệu thường được sử dụng ở dạng màng mỏng mảnh trong những đầu ghi từ. Ngoài ra, những vậtliệu như pecmaloi độ cảm từ cao Ni50Fe50, Fe16 N2 ( 4 πMs ≈ 3T ) cũng được sử dụng. Vật liệu ghi từ phải có lực kháng từ không quá cao, tương ứng với từ trường đầughi tạo ra được đồng thời lại không quá thấp để vẫn còn giữ được mômen từ dướitác dụng của những trường tĩnh từ của những bít xung quanh. Lực kháng từ chỉ nằm trongkhoảng 500 ÷ 3000 Oe tức là vật liệu ghi từ nằm ở thang thấp nhất của vật liệu từcứng. Vật liệu ghi từ bắt buộc phải có độ từ dư ( cảm ứng từ dư B r ) đủ lớn sao chotrường ghi của những đơn đômen được ghi tín hiệu sắp xếp trên mặt phẳng màng ghi từ vớiđộ lớn khoảng chừng vài Oe, hoàn toàn có thể phân biệt được bằng đầu đọc. Một vật liệu ghi từ đòihỏi phải có độ từ hoá bão hoà I S tối thiểu là 500G ( µIS ≈ 0,63 T ) và trong khoảng chừng cácgiá trị cao hơn cho tới 1000G. Vật liệu dùng để sản xuất đầu đọc bắt buộc phải có lực kháng từ thấp, tín hiệu ồnthấp và có độ từ thẩm rất cao để hoàn toàn có thể tương ứng với một sự biến hóa rất nhỏ vềthông lượng từ tương quan tới sự biến hóa của trường ghi yếu trên mặt phẳng của màngghi từ. Các tính năng đọc và ghi hoàn toàn có thể được đặc trưng cùng một đầu cảm ứng nhưngcó những nâng cấp cải tiến để phân biệt những tính năng đọc hay ghi. Khoảng cách từ đầu cảmứng ( đọc hay ghi ) tới màng ghi từ càng nhỏ càng tốt nhưng yên cầu phải không đểxảy ra bất kể sự va chạm nào với màng từ. 1.4. Một số loại đầu ghi và đọc từ1. 4.1. Đầu đọc và ghi trong ổ đĩa mềmỔ đĩa mềm ( Floppy Disk Drive – FDD ) là một thiết bị sử dụng để đọc và ghi dữliệu từ những đĩa mềm ( hình 1.12 ). Các đĩa mềm tàng trữ tài liệu trải qua nguyên lý————————————————————————————————————-17Vật liệu từ và ứng dụng————————————————————————————————————–lưu trữ từ trên mặt phẳng, do đó ổ đĩa mềm hoạt động giải trí dựa trên nguyên tắc đọc và ghitheo đặc thù từ. Đầu đọc / ghi tài liệu được phong cách thiết kế ở cả hai mặt của ổ đĩa, chúngcùng chuyển dời với nhau trong suốt quy trình đọc và cùng thực thi công dụng đọcvà ghi tài liệu. Khi triển khai tính năng ghi, đầu đọc có tiết diện lớn hơn sẽ xóa dữliệu cũ, bảo vệ tài liệu ghi vào không bị nhầm lẫn. Đầu đọc đĩa mềm giữ chặt vùngtrung tâm của vỏ đĩa và làm quay đĩa mềm ở bên trong để truy xuất tài liệu. Hình 1.12. Hình ảnh bên trong ổ đĩa mềm. 1.4.2. Đầu đọc và ghi trong ổ đĩa cứngỔ đĩa cứng, hay còn gọi là ổ cứng ( Hard Disk Drive – HDD ) là thiết bị dùng đểlưu trữ tài liệu trên mặt phẳng những tấm đĩa hình tròn trụ phủ vật liệu từ tính. Ổ đĩa cứng là loại bộ nhớ ” không biến hóa ” ( non-volatile ), có nghĩa là chúng khôngbị mất tài liệu khi ngừng cung ứng nguồn điện cho chúng. Hình 1.13 là ảnh cấu tạobên trong của một ổ đĩa cứng thông dụng thời nay. Hình 1.13. Cấu tạo bên trong của một ổ đĩa cứng thông dụng ngày này. ————————————————————————————————————- 18V ật liệu từ và ứng dụng————————————————————————————————————–Đầu đọc đơn thuần được cấu trúc gồm lõi ferit ( trước kia là lõi sắt ) và cuộndây ( giống như nam châm hút điện ) quấn trên lõi để đưa dòng điện vào ( khi ghi ) hay lấyra ( khi đọc ), khe hở gọi là khe từ lướt trên mặt phẳng đĩa với khoảng cách rất gần, bằng1 / 10 sợi tóc. Gần đây những công nghệ tiên tiến mới hơn giúp cho ổ đĩa cứng hoạt động giải trí với mậtđộ xít chặt hơn như : chuyển những hạt từ sắp xếp theo phương vuông góc với bề mặtđĩa nên những đầu đọc được phong cách thiết kế nhỏ gọn và tăng trưởng theo những ứng dụng côngnghệ mới. Đầu đọc trong đĩa cứng có tác dụng đọc tài liệu dưới dạng từ hoá trênbề mặt đĩa từ hoặc từ hoá lên những mặt đĩa khi ghi tài liệu. Số đầu đọc ghi luôn bằngsố mặt hoạt động giải trí được của những đĩa cứng, có nghĩa chúng nhỏ hơn hoặc bằng hai lầnsố đĩa ( nhỏ hơn trong trường hợp ví dụ hai đĩa nhưng chỉ sử dụng 3 mặt ). Trong quy trình ghi, tín hiệu điện ở dạng tín hiệu số 0,1 được đưa vào đầu từghi lên mặt phẳng đĩa thành những nam châm hút rất nhỏ và hòn đảo chiều tuỳ theo tín hiệu đưavào là 0 hay 1 ( hình 1.14 ). Hình 1.14. Nguyên lý đọc ghi bằng từ trên mặt phẳng đĩa cứng. Trong quy trình phát, đầu từ đọc lướt qua mặt phẳng đĩa dọc theo những đường track đãđược ghi tín hiệu, tại điểm giao nhau của những nam châm hút có từ trường đổi khác vàcảm ứng lên cuộn dây tạo thành một xung điện, xung điện này rất yếu được đưa vàokhuếch đại để lấy ra tín hiệu 0,1 khởi đầu. Dữ liệu được ghi / đọc đồng thời trên mọiđĩa. Việc thực thi phân chia tài liệu trên những đĩa được thực thi nhờ những mạch điềukhiển trên bo mạch của ổ đĩa cứng. Trước kia những đầu đọc / ghi của ổ đĩa cứng thường được sản xuất như trong ổ đĩamềm, lõi sắt mềm cộng với 8 đến 34 ( hoặc hơn ) vòng dây đồng mảnh. Các đầu từ————————————————————————————————————-19Vật liệu từ và ứng dụng————————————————————————————————————–này có size lớn và tương đối nặng làm hạn chế số rãnh hoàn toàn có thể có trên mặt đĩamà mạng lưới hệ thống vận động và di chuyển đầu từ phải khắc phục. Hiện nay, những phong cách thiết kế đầu từ đãloại bỏ những kiểu quấn dây cổ xưa mà dùng loại đầu từ màng mỏng mảnh. Nó được chế tạogiống như vi mạch dùng công nghệ tiên tiến quang hóa. Do size nhỏ và nhẹ nên độrộng của rãnh ghi cũng nhỏ hơn và thời hạn di dời đầu từ nhanh hơn. Trongcấu trúc toàn diện và tổng thể, những đầu đọc / ghi này được gắn vào những cánh tay sắt kẽm kim loại dài điềukhiển bằng những môtơ. Các vi mạch tiền khuếch đại của đầu từ thường được gắn trêntấm vi mạch in nhỏ nằm trong bộ di dời đầu từ. Toàn bộ cấu trúc này đượcbọc kín trong hộp đĩa. Nhiều loại đĩa cứng sử dụng môtơ cuộn dây di động ( voicecoil motor ) còn gọi là môtơ cuộn dây quay ( rotary coil ) hoặc servo để điều khiểnchuyển động của đầu từ. Thách thức lớn nhất trong việc tinh chỉnh và điều khiển đầu từ là giữ chođược nó đúng ngay tâm rãnh mong ước. Nói cách khác là những nhiễu loại khí độnghọc, những hiệu ứng nhiệt trên đĩa từ và những biến thiên của dòng tinh chỉnh và điều khiển môtơ servocó thể gây nên sai số trong việc xác định đầu từ. Vị trí của đầu từ phải luôn luôn đượckiểm tra và kiểm soát và điều chỉnh kịp thời để bảo vệ vị trí rãnh thật đúng chuẩn. Quá trình hiệuchỉnh đầu từ theo rãnh gọi là chiêu thức servo đầu từ. Cần có thông tin để so sánhvị trí thực và vị trí mong ước của đầu từ. Thông tin servo dành riêng ( Dedicatedservo information ) được ghi trên mặt đĩa từ dự trữ. Thông tin servo nhúng ( Embedded servo information ) lại được mã hoá thành những chùm tài liệu ngắn đặttrên từng sector. Hệ thống servo sử dụng sự lệch sóng của những xung tín hiệu của cácrãnh kế cận để xác lập đầu từ có được đặt đúng giữa rãnh hay không. Trong ổ đĩa cứng lúc bấy giờ thường sử dụng một số ít loại đầu đọc như thể đầu đọcAMR, đầu đọc GMR, đầu đọc spin – valve, … – Đầu ghi AMR : Đầu ghi AMR là đầu ghi dựa trên hiệu ứng từ điện trở dị hướng ( Anisotropicmagnetoresistance – AMR ). ————————————————————————————————————- 20V ật liệu từ và ứng dụng————————————————————————————————————–Hình 1.15. Đầu ghi dựa trên hiệu ứng AMR.AMR là một hiệu ứng từ điện trở mà ở đó tỉ số từ điện trở ( sự biến hóa của điện trởsuất dưới tính năng của từ trường ngoài ) nhờ vào vào hướng của dòng điện ( khôngđẳng hướng trong mẫu ), mà thực chất là sự nhờ vào của điện trở vào góc tương đốigiữa từ độ và dòng điện. – Đầu đọc / ghi GMR : Đầu đọc / ghi GMR là đầu đọc / ghi dựa trên hiệu ứng từ trở khổng lồ GMR. Cấutrúc của thành phần GMR gồm những lớp sắt từ F được ngăn cách với nhau bởi những lớp phitừ N.Hình 1.16. ( a ) Cấu hình phản sắt từ của GMR ; ( b ) Cấu hình sắt từ của GMR.Do thuộc tính có spin của điện tử nên những điện tử với chiều spin xác lập ( spin ↑ hoặc spin ↓ ) có Xác Suất tán xạ khác nhau tại mặt phẳng ngăn cách giữa những lớp sắt từ vàphi từ, nó nhờ vào cả vào sự sắp xếp từ độ của những lớp sắt từ. Khi không có từ————————————————————————————————————-21Vật liệu từ và ứng dụng————————————————————————————————————–trường ngoài, những lớp sắt từ sắp xếp phản tuy nhiên với nhau, cả hai loại điện tử với spin ↑ và spin ↓ đều bị tán xạ như nhau khi đi qua cấu trúc này nên điện trở của cả hệ làlớn. Từ trường ngoài có công dụng sắp xếp lại véctơ từ độ của những lớp sắt từ theohướng song song với nhau. Khi đó Xác Suất tán xạ của một trong hai loại spin ↑ hoặcspin ↓ sẽ giảm xuống và coi như hệ mở thông kênh spin này, những điện tử dẫn sẽ chỉchủ yếu là do điện tử với một trong hai loại spin có Tỷ Lệ tán xạ thấp. Như vậy, nguyên do gây nên hiệu ứng GMR là do sự sắp xếp lại những véctơ từ độ theo hướngsong tuy nhiên với nhau dưới tính năng của từ trường. Điện trở sẽ đạt được giá trị caonhất khi không có từ trường ( những véctơ từ độ là trọn vẹn phản tuy nhiên với nhau ), cònkhi có từ trường điện trở sẽ giảm xuống do những véctơ từ độ trọn vẹn song song vớinhau. Ta có tỷ số GMR là : GMR = ( RAP – RP ) / RP ( RAP > Rp ) ( 1.3 ) trong đó RAP là điện trở của thông số kỹ thuật phản sắt từ, RP là điện trở của thông số kỹ thuật sắt từ. Hình 1.17. Đầu đọc / ghi dựa trên hiệu ứng GMR. – Đầu đọc spin – valve : Spin – valve là một linh phụ kiện từ tính cấu trúc từ một màng mỏng dính đa lớp gồm cáclớp sắt từ ngăn cách bởi những lớp phi từ mà ở đó điện trở của hệ biến hóa phụ thuộcvào sự xu thế của từ độ trong những lớp sắt từ. Tính chất của spin – valve dựa trênhiệu ứng từ điện trở khổng lồ và được ứng dụng trong những đầu đọc ổ cứng máy tính. Cơ chế của hiệu ứng được lý giải qua chính sách ” tán xạ phụ thuộc vào spin ” của điện tử. Vàcó thể thấy rằng trạng thái của hệ ( điện trở cao, điện trở thấp ) nhờ vào vào sự địnhhướng tương đối của từ độ của những lớp sắt từ. Có nghĩa là việc từ độ những lớp này————————————————————————————————————-22Vật liệu từ và ứng dụng————————————————————————————————————–định hướng tương đối với nhau thế nào ( song song, phản song song ) hoàn toàn có thể cho phépdòng điện tử ( dòng spin ) được truyền qua hoặc không hề truyền qua, hay nói cáchkhác, từ độ của những lớp sắt từ hoạt động giải trí như một chiếc van đóng mở spin. Tuynhiên, đây là cấu trúc đơn thuần với sự quay của những lớp sắt từ theo từ trường khá tựdo và việc tinh chỉnh và điều khiển tín hiệu trở nên khó khăn vất vả. Hiện nay cấu trúc spin valve gồm 4 lớp chính : bên dưới là lớp màng mỏng mảnh vậtliệu phản sắt từ ( lúc bấy giờ sử dụng phổ cập là IrMn … ), bên trên lớp này là lớp sắt từđầu tiên có từ độ bị ghim bởi lớp phản sắt từ nên có từ độ bị giữ theo một hướng ( gọi là lớp ghim ), phía trên là lớp phi từ ( hoặc lớp điệnmôi ), và trên cùng là lớp sắt từ với từ độ quay tự do. Hình 1.18. Cấu trúc cắt ngang của màng đa lớp spin valve với link phản sắt từ. Với quy mô này, khi đặt từ trường ngoài chỉ có từ độ của lớp tự do bị quay theo từtrường ngoài do đó hiệu ứng từ điện trở hầu hết chỉ phụ thuộc vào vào từ độ lớp bêntrên. Từ độ của lớp ghim bên dưới chỉ bị quay đi khi có từ trường ngoài đủ lớn đểphá vỡ link với lớp phản sắt từ ( hình 1.19 ). ————————————————————————————————————- Hình 1.19. Liên kết phản sắt từ trong các23 màng mỏng mảnh đa lớp spin – valve trong cácđầu đọc ổ đĩa cứng. Vật liệu từ và ứng dụng————————————————————————————————————–1. 4.3. Đầu đọc và ghi trong ổ đĩa quangỔ đĩa quang là một loại thiết bị dùng để đọc đĩa quang, nó sử dụng một loạithiết bị phát ra một tia laser chiếu vào mặt phẳng đĩa quang và phản xạ lại trên đầu thuvà được giải thuật thành tín hiệu để đọc hoặc ghi trên đĩa tròn ( hình 1.20 ). Hình 1.20. Hệ thống đèn laser, thấu kính và cảm ứng của một ổ đĩa quang. Chẳng hạn so với đĩa CD rom, tài liệu ghi lên đĩa là dạng tín hiệu số 0, 1 ở đầughi, người ta sử dụng súng laser để ghi dữ liệu lên đĩa. Hình 1.21 trình diễn nguyênlý ghi tài liệu lên đĩa CD rom. ————————————————————————————————————- 24V ật liệu từ và ứng dụng————————————————————————————————————–Hình 1.21. Nguyên lý ghi tài liệu lên đĩa CD rom. Đĩa quay với vận tốc cao và súng laser sẽ chiếu tia laser lên mặt phẳng đĩa, tia laser đượcđiều khiển tắt sáng theo tín hiệu 0 hay 1 đưa vào ( ứng với tín hiệu 0 là tia laser tắt, ứng với tín hiệu 1 là tia laser sáng đốt cháy mặt phẳng đĩa thành 1 điểm làm mất khảnăng phản xạ ). Còn so với quy trình đọc tài liệu ghi từ đĩa CD rom, người ta sử dụng tia laser ( yếuhơn lúc ghi ) chiếu lên mặt phẳng đĩa dọc theo những đường track có tài liệu, sau đó hứnglấy tia phản xạ quay lại rồi đổi chúng thành tín hiệu điện. Khi tia laser chiếu qua cácđiểm trên mặt phẳng đĩa bị đốt cháy sẽ không có tia phản xạ và tín hiệu thu được là 0. Khi tia laser chiếu qua những điểm trên mặt phẳng đĩa không bị đốt cháy sẽ có tia phản xạvà tín hiệu thu được là 1. Tia phản xạ sẽ được ma trận diode đổi thành tín hiệu điện, sau khi khuếch đại và giải quyết và xử lý ta thu được tín hiệu khởi đầu. Hình 1.22 trình diễn nguyênlý đọc tín hiệu từ đĩa CD rom. Hình 1.22. Nguyên lý đọc tín hiệu từ đĩa CD rom. ————————————————————————————————————- 25
Source: https://suanha.org
Category : Vật Liệu